class LinearRegressionWithSGD extends GeneralizedLinearAlgorithm[LinearRegressionModel] with Serializable
Train a linear regression model with no regularization using Stochastic Gradient Descent. This solves the least squares regression formulation f(weights) = 1/n ||A weights-y||2 (which is the mean squared error). Here the data matrix has n rows, and the input RDD holds the set of rows of A, each with its corresponding right hand side label y. See also the documentation for the precise formulation.
- Annotations
- @Since( "0.8.0" )
- Source
- LinearRegression.scala
- Alphabetic
- By Inheritance
- LinearRegressionWithSGD
- GeneralizedLinearAlgorithm
- Serializable
- Serializable
- Logging
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        var
      
      
        addIntercept: Boolean
      
      
      Whether to add intercept (default: false). Whether to add intercept (default: false). - Attributes
- protected
- Definition Classes
- GeneralizedLinearAlgorithm
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        createModel(weights: Vector, intercept: Double): LinearRegressionModel
      
      
      Create a model given the weights and intercept Create a model given the weights and intercept - Attributes
- protected[mllib]
- Definition Classes
- LinearRegressionWithSGD → GeneralizedLinearAlgorithm
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        generateInitialWeights(input: RDD[LabeledPoint]): Vector
      
      
      Generate the initial weights when the user does not supply them Generate the initial weights when the user does not supply them - Attributes
- protected
- Definition Classes
- GeneralizedLinearAlgorithm
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getNumFeatures: Int
      
      
      The dimension of training features. The dimension of training features. - Definition Classes
- GeneralizedLinearAlgorithm
- Annotations
- @Since( "1.4.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        isAddIntercept: Boolean
      
      
      Get if the algorithm uses addIntercept Get if the algorithm uses addIntercept - Definition Classes
- GeneralizedLinearAlgorithm
- Annotations
- @Since( "1.4.0" )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        isTraceEnabled(): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        log: Logger
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logName: String
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        var
      
      
        numFeatures: Int
      
      
      The dimension of training features. The dimension of training features. - Attributes
- protected
- Definition Classes
- GeneralizedLinearAlgorithm
 
- 
      
      
      
        
      
    
      
        
        var
      
      
        numOfLinearPredictor: Int
      
      
      In GeneralizedLinearModel, only single linear predictor is allowed for both weights and intercept.In GeneralizedLinearModel, only single linear predictor is allowed for both weights and intercept. However, for multinomial logistic regression, with K possible outcomes, we are training K-1 independent binary logistic regression models which requires K-1 sets of linear predictor.As a result, the workaround here is if more than two sets of linear predictors are needed, we construct bigger weightsvector which can hold both weights and intercepts. If the intercepts are added, the dimension ofweightswill be (numOfLinearPredictor) * (numFeatures + 1) . If the intercepts are not added, the dimension ofweightswill be (numOfLinearPredictor) * numFeatures.Thus, the intercepts will be encapsulated into weights, and we leave the value of intercept in GeneralizedLinearModel as zero. - Attributes
- protected
- Definition Classes
- GeneralizedLinearAlgorithm
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        optimizer: GradientDescent
      
      
      The optimizer to solve the problem. The optimizer to solve the problem. - Definition Classes
- LinearRegressionWithSGD → GeneralizedLinearAlgorithm
- Annotations
- @Since( "0.8.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        run(input: RDD[LabeledPoint], initialWeights: Vector): LinearRegressionModel
      
      
      Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries starting from the initial weights provided. Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries starting from the initial weights provided. - Definition Classes
- GeneralizedLinearAlgorithm
- Annotations
- @Since( "1.0.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        run(input: RDD[LabeledPoint]): LinearRegressionModel
      
      
      Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries. Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries. - Definition Classes
- GeneralizedLinearAlgorithm
- Annotations
- @Since( "0.8.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setIntercept(addIntercept: Boolean): LinearRegressionWithSGD.this.type
      
      
      Set if the algorithm should add an intercept. Set if the algorithm should add an intercept. Default false. We set the default to false because adding the intercept will cause memory allocation. - Definition Classes
- GeneralizedLinearAlgorithm
- Annotations
- @Since( "0.8.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setValidateData(validateData: Boolean): LinearRegressionWithSGD.this.type
      
      
      Set if the algorithm should validate data before training. Set if the algorithm should validate data before training. Default true. - Definition Classes
- GeneralizedLinearAlgorithm
- Annotations
- @Since( "0.8.0" )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        var
      
      
        validateData: Boolean
      
      
      - Attributes
- protected
- Definition Classes
- GeneralizedLinearAlgorithm
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        validators: Seq[(RDD[LabeledPoint]) ⇒ Boolean]
      
      
      - Attributes
- protected
- Definition Classes
- GeneralizedLinearAlgorithm
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()