public class AFTSurvivalRegressionModel extends Model<AFTSurvivalRegressionModel> implements AFTSurvivalRegressionParams, MLWritable
AFTSurvivalRegression
.Modifier and Type | Method and Description |
---|---|
Vector |
coefficients() |
AFTSurvivalRegressionModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
double |
intercept() |
static AFTSurvivalRegressionModel |
load(String path) |
double |
predict(Vector features) |
Vector |
predictQuantiles(Vector features) |
static MLReader<AFTSurvivalRegressionModel> |
read() |
double |
scale() |
AFTSurvivalRegressionModel |
setFeaturesCol(String value) |
AFTSurvivalRegressionModel |
setPredictionCol(String value) |
AFTSurvivalRegressionModel |
setQuantileProbabilities(double[] value) |
AFTSurvivalRegressionModel |
setQuantilesCol(String value) |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transform
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
censorCol, getCensorCol, getQuantileProbabilities, getQuantilesCol, hasQuantilesCol, quantileProbabilities, quantilesCol, validateAndTransformSchema
featuresCol, getFeaturesCol
getLabelCol, labelCol
getPredictionCol, predictionCol
getMaxIter, maxIter
fitIntercept, getFitIntercept
aggregationDepth, getAggregationDepth
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
save
public static MLReader<AFTSurvivalRegressionModel> read()
public static AFTSurvivalRegressionModel load(String path)
public String uid()
Identifiable
uid
in interface Identifiable
public Vector coefficients()
public double intercept()
public double scale()
public AFTSurvivalRegressionModel setFeaturesCol(String value)
public AFTSurvivalRegressionModel setPredictionCol(String value)
public AFTSurvivalRegressionModel setQuantileProbabilities(double[] value)
public AFTSurvivalRegressionModel setQuantilesCol(String value)
public double predict(Vector features)
public Dataset<Row> transform(Dataset<?> dataset)
Transformer
transform
in class Transformer
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public AFTSurvivalRegressionModel copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Model<AFTSurvivalRegressionModel>
extra
- (undocumented)public MLWriter write()
MLWritable
MLWriter
instance for this ML instance.write
in interface MLWritable