
A Handbook of Statistical Analyses
Using R — 3rd Edition

Torsten Hothorn and Brian S. Everitt

CHAPTER 8

Density Estimation: Erupting Geysers
and Star Clusters

8.1 Introduction

8.2 Density Estimation

The three kernel functions are implemented in R as shown in lines 1–3 of
Figure 8.1. For some grid x, the kernel functions are plotted using the R

statements in lines 5–11 (Figure 8.1).

The kernel estimator f̂ is a sum of ‘bumps’ placed at the observations.
The kernel function determines the shape of the bumps while the window
width h determines their width. Figure 8.2 (redrawn from a similar plot in
Silverman, 1986) shows the individual bumps n−1h−1K((x−xi)/h), as well as

the estimate f̂ obtained by adding them up for an artificial set of data points

R> x <- c(0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5)

R> n <- length(x)

For a grid

R> xgrid <- seq(from = min(x) - 1, to = max(x) + 1, by = 0.01)

on the real line, we can compute the contribution of each measurement in x,
with h = 0.4, by the Gaussian kernel (defined in Figure 8.1, line 3) as follows;

R> h <- 0.4

R> bumps <- sapply(x, function(a) gauss((xgrid - a)/h)/(n * h))

A plot of the individual bumps and their sum, the kernel density estimate f̂ ,
is shown in Figure 8.2.

8.3 Analysis Using R

8.3.1 A Parametric Density Estimate for the Old Faithful Data

R> logL <- function(param, x) {

+ d1 <- dnorm(x, mean = param[2], sd = param[3])

+ d2 <- dnorm(x, mean = param[4], sd = param[5])

+ -sum(log(param[1] * d1 + (1 - param[1]) * d2))

+ }

R> startparam <- c(p = 0.5, mu1 = 50, sd1 = 3, mu2 = 80, sd2 = 3)

R> opp <- optim(startparam, logL, x = faithful$waiting,

3

4 DENSITY ESTIMATION

1 R> rec <- function(x) (abs(x) < 1) * 0.5

2 R> tri <- function(x) (abs(x) < 1) * (1 - abs(x))

3 R> gauss <- function(x) 1/sqrt(2*pi) * exp(-(x^2)/2)

4 R> x <- seq(from = -3, to = 3, by = 0.001)

5 R> plot(x, rec(x), type = "l", ylim = c(0,1), lty = 1,

6 + ylab = expression(K(x)))

7 R> lines(x, tri(x), lty = 2)

8 R> lines(x, gauss(x), lty = 3)

9 R> legend(-3, 0.8, legend = c("Rectangular", "Triangular",

10 + "Gaussian"), lty = 1:3, title = "kernel functions",

11 + bty = "n")

Figure 8.1 Three commonly used kernel functions.

ANALYSIS USING R 5

1 R> plot(xgrid, rowSums(bumps), ylab = expression(hat(f)(x)),

2 + type = "l", xlab = "x", lwd = 2)

3 R> rug(x, lwd = 2)

4 R> out <- apply(bumps, 2, function(b) lines(xgrid, b))

−1 0 1 2 3 4

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0
0

.3
5

x

f^ (x
)

Figure 8.2 Kernel estimate showing the contributions of Gaussian kernels evalu-
ated for the individual observations with bandwidth h = 0.4.

+ method = "L-BFGS-B",

+ lower = c(0.01, rep(1, 4)),

+ upper = c(0.99, rep(200, 4)))

6 DENSITY ESTIMATION

R> epa <- function(x, y)

+ ((x^2 + y^2) < 1) * 2/pi * (1 - x^2 - y^2)

R> x <- seq(from = -1.1, to = 1.1, by = 0.05)

R> epavals <- sapply(x, function(a) epa(a, x))

R> persp(x = x, y = x, z = epavals, xlab = "x", ylab = "y",

+ zlab = expression(K(x, y)), theta = -35, axes = TRUE,

+ box = TRUE)

x

y

K
(x

, y
)

Figure 8.3 Epanechnikov kernel for a grid between (−1.1,−1.1) and (1.1, 1.1).

R> opp

$par

p mu1 sd1 mu2 sd2

0.361 54.612 5.872 80.093 5.867

$value

[1] 1034

$counts

function gradient

55 55

$convergence

[1] 0

ANALYSIS USING R 7

1 R> data("faithful", package = "datasets")

2 R> x <- faithful$waiting

3 R> layout(matrix(1:3, ncol = 3))

4 R> hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency",

5 + probability = TRUE, main = "Gaussian kernel",

6 + border = "gray")

7 R> lines(density(x, width = 12), lwd = 2)

8 R> rug(x)

9 R> hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency",

10 + probability = TRUE, main = "Rectangular kernel",

11 + border = "gray")

12 R> lines(density(x, width = 12, window = "rectangular"), lwd = 2)

13 R> rug(x)

14 R> hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency",

15 + probability = TRUE, main = "Triangular kernel",

16 + border = "gray")

17 R> lines(density(x, width = 12, window = "triangular"), lwd = 2)

18 R> rug(x)

Gaussian kernel

Waiting times (in min.)

F
re

q
u

e
n

c
y

40 60 80 100

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

Rectangular kernel

Waiting times (in min.)

F
re

q
u

e
n

c
y

40 60 80 100

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

Triangular kernel

Waiting times (in min.)

F
re

q
u

e
n

c
y

40 60 80 100

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

Figure 8.4 Density estimates of the geyser eruption data imposed on a histogram
of the data.

8 DENSITY ESTIMATION

R> library("KernSmooth")

R> data("CYGOB1", package = "HSAUR3")

R> CYGOB1d <- bkde2D(CYGOB1, bandwidth = sapply(CYGOB1, dpik))

R> contour(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat,

+ xlab = "log surface temperature",

+ ylab = "log light intensity")

log surface temperature

lo
g

 l
ig

h
t

in
te

n
s
it
y

 0.2

 0.2

 0.2

 0.2

 0.4

 0.4

 0.6

 0.6

 0.8
 1

 1.2

 1.4

 1.6

 1
.8

 2

 2
.2

3.4 3.6 3.8 4.0 4.2 4.4 4.6

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

6
.5

Figure 8.5 A contour plot of the bivariate density estimate of the CYGOB1 data,
i.e., a two-dimensional graphical display for a three-dimensional prob-
lem.

ANALYSIS USING R 9

R> persp(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat,

+ xlab = "log surface temperature",

+ ylab = "log light intensity",

+ zlab = "estimated density",

+ theta = -35, axes = TRUE, box = TRUE)

log surfa
ce te

mperature

log light intensity

e
s
tim

a
te

d
 d

e
n
s
ity

Figure 8.6 The bivariate density estimate of the CYGOB1 data, here shown in a
three-dimensional fashion using the persp function.

Of course, optimizing the appropriate likelihood ‘by hand’ is not very con-
venient. In fact, (at least) two packages offer high-level functionality for esti-
mating mixture models. The first one is package mclust (Fraley et al., 2014)
implementing the methodology described in Fraley and Raftery (2002). Here,
a Bayesian information criterion (BIC) is applied to choose the form of the
mixture model:

R> library("mclust")

10 DENSITY ESTIMATION

R> mc <- Mclust(faithful$waiting)

R> mc

'Mclust' model object: (E,2)

Available components:

[1] "call" "data" "modelName"

[4] "n" "d" "G"

[7] "BIC" "loglik" "df"

[10] "bic" "icl" "hypvol"

[13] "parameters" "z" "classification"

[16] "uncertainty"

and the estimated means are

R> mc$parameters$mean

1 2

54.6 80.1

with estimated standard deviation (found to be equal within both groups)

R> sqrt(mc$parameters$variance$sigmasq)

[1] 5.87

The proportion is p̂ = 0.36. The second package is called flexmix whose func-
tionality is described by Leisch (2004). A mixture of two normals can be fitted
using

R> library("flexmix")

R> fl <- flexmix(waiting ~ 1, data = faithful, k = 2)

with p̂ = 0.52 and estimated parameters

R> parameters(fl, component = 1)

Comp.1

coef.(Intercept) 70.8

sigma 13.6

R> parameters(fl, component = 2)

Comp.2

coef.(Intercept) 71.0

sigma 13.6

We can get standard errors for the five parameter estimates by using a
bootstrap approach (see Efron and Tibshirani, 1993). The original data are
slightly perturbed by drawing n out of n observations with replacement and
those artificial replications of the original data are called bootstrap samples.
Now, we can fit the mixture for each bootstrap sample and assess the vari-
ability of the estimates, for example using confidence intervals. Some suitable
R code based on the Mclust function follows. First, we define a function that,
for a bootstrap sample indx, fits a two-component mixture model and returns
p̂ and the estimated means (note that we need to make sure that we always
get an estimate of p, not 1− p):

R> library("boot")

R> fit <- function(x, indx) {

+ a <- Mclust(x[indx], minG = 2, maxG = 2,

+ modelNames="E")$parameters

ANALYSIS USING R 11

R> opar <- as.list(opp$par)

R> rx <- seq(from = 40, to = 110, by = 0.1)

R> d1 <- dnorm(rx, mean = opar$mu1, sd = opar$sd1)

R> d2 <- dnorm(rx, mean = opar$mu2, sd = opar$sd2)

R> f <- opar$p * d1 + (1 - opar$p) * d2

R> hist(x, probability = TRUE, xlab = "Waiting times (in min.)",

+ border = "gray", xlim = range(rx), ylim = c(0, 0.06),

+ main = "")

R> lines(rx, f, lwd = 2)

R> lines(rx, dnorm(rx, mean = mean(x), sd = sd(x)), lty = 2,

+ lwd = 2)

R> legend(50, 0.06, lty = 1:2, bty = "n",

+ legend = c("Fitted two-component mixture density",

+ "Fitted single normal density"))

Waiting times (in min.)

D
e

n
s
it
y

40 50 60 70 80 90 100 110

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

0
.0

6

Fitted two−component mixture density

Fitted single normal density

Figure 8.7 Fitted normal density and two-component normal mixture for geyser
eruption data.

12 DENSITY ESTIMATION

+ if (a$pro[1] < 0.5)

+ return(c(p = a$pro[1], mu1 = a$mean[1],

+ mu2 = a$mean[2]))

+ return(c(p = 1 - a$pro[1], mu1 = a$mean[2],

+ mu2 = a$mean[1]))

+ }

The function fit can now be fed into the boot function (Canty and Ripley,
2014) for bootstrapping (here 1000 bootstrap samples are drawn)

R> bootpara <- boot(faithful$waiting, fit, R = 1000)

We assess the variability of our estimates p̂ by means of adjusted bootstrap
percentile (BCa) confidence intervals, which for p̂ can be obtained from

R> boot.ci(bootpara, type = "bca", index = 1)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1000 bootstrap replicates

CALL :

boot.ci(boot.out = bootpara, type = "bca", index = 1)

Intervals :

Level BCa

95% (0.304, 0.423)

Calculations and Intervals on Original Scale

We see that there is a reasonable variability in the mixture model; however,
the means in the two components are rather stable, as can be seen from

R> boot.ci(bootpara, type = "bca", index = 2)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1000 bootstrap replicates

CALL :

boot.ci(boot.out = bootpara, type = "bca", index = 2)

Intervals :

Level BCa

95% (53.4, 56.1)

Calculations and Intervals on Original Scale

for µ̂1 and for µ̂2 from

R> boot.ci(bootpara, type = "bca", index = 3)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1000 bootstrap replicates

CALL :

boot.ci(boot.out = bootpara, type = "bca", index = 3)

Intervals :

Level BCa

95% (79, 81)

Calculations and Intervals on Original Scale

Finally, we show a graphical representation of both the bootstrap distribu-
tion of the mean estimates and the corresponding confidence intervals. For
convenience, we define a function for plotting, namely

R> bootplot <- function(b, index, main = "") {

ANALYSIS USING R 13

R> layout(matrix(1:2, ncol = 2))

R> bootplot(bootpara, 2, main = expression(mu[1]))

R> bootplot(bootpara, 3, main = expression(mu[2]))

52 54 56

0
.0

0
.2

0
.4

0
.6

µ1

N = 1000 Bandwidth = 0.1489

D
e

n
s
it
y

()

78 79 80 81 82

0
.0

0
.2

0
.4

0
.6

0
.8

µ2

N = 1000 Bandwidth = 0.111

D
e

n
s
it
y

()

Figure 8.8 Bootstrap distribution and confidence intervals for the mean estimates
of a two-component mixture for the geyser data.

+ dens <- density(b$t[,index])

+ ci <- boot.ci(b, type = "bca", index = index)$bca[4:5]

+ est <- b$t0[index]

+ plot(dens, main = main)

+ y <- max(dens$y) / 10

+ segments(ci[1], y, ci[2], y, lty = 2)

+ points(ci[1], y, pch = "(")

+ points(ci[2], y, pch = ")")

+ points(est, y, pch = 19)

+ }

The element t of an object created by boot contains the bootstrap replica-
tions of our estimates, i.e., the values computed by fit for each of the 1000
bootstrap samples of the geyser data. First, we plot a simple density esti-
mate and then construct a line representing the confidence interval. We apply
this function to the bootstrap distributions of our estimates µ̂1 and µ̂2 in
Figure 8.8.

Bibliography

Canty, A. and Ripley, B. D. (2014), boot: Bootstrap R (S-PLUS) Functions,
URL http://CRAN.R-project.org/package=boot, R package version 1.3-
9.

Efron, B. and Tibshirani, R. J. (1993), An Introduction to the Bootstrap,
London, UK: Chapman & Hall/CRC.

Fraley, C. and Raftery, A. E. (2002), “Model-based clustering, discriminant
analysis, and density estimation,” Journal of the American Statistical As-
sociation, 97, 611–631.

Fraley, C., Raftery, A. E., and Wehrens, R. (2014), mclust: Model-based Clus-
ter Analysis, URL http://www.stat.washington.edu/mclust, R package
version 4.3.

Leisch, F. (2004), “FlexMix: A general framework for finite mixture models
and latent class regression in R,” Journal of Statistical Software, 11, URL
http://www.jstatsoft.org/v11/i08/.

Silverman, B. (1986), Density Estimation, London, UK: Chapman &
Hall/CRC.

http://CRAN.R-project.org/package=boot
http://www.stat.washington.edu/mclust
http://www.jstatsoft.org/v11/i08/

	Density Estimation
	Introduction
	Density Estimation
	Analysis Using R

