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Chapter 1

Follow-up data in the Epi package

In the Epi-package, follow-up data is represented by adding some extra variables to a data
frame. Such a data frame is called a Lexis object. The tools for handling follow-up data
then use the structure of this for special plots, tabulations etc.

Follow-up data basically consists of a time of entry, a time of exit and an indication of
the status at exit (normally either “alive” or “dead”). Implicitly is also assumed a status
during the follow-up (usually “alive”).
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Figure 1.1: Follow-up of two persons

1.1 Timescales

A timescale is a variable that varies deterministicly within each person during follow-up,
e.g..

o Age

e (Calendar time

e Time since treatment
e Time since relapse

All timescales advance at the same pace, so the time followed is the same on all timescales.
Therefore, it suffices to use only the entry point on each of the time scale, for example:

e Age at entry.
e Date of entry.

e Time since treatment (at treatment this is 0).
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e Time since relapse (at relapse this is 0)..

For illustration we need to load the Epi package:

> library(Epi)

> print( sessionInfo(), 1=F )

R version 3.4.4 (2018-03-15)

Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.5 LTS

Matrix products: default
BLAS: /usr/lib/openblas-base/libopenblas.so.0
LAPACK: /usr/lib/lapack/liblapack.so0.3.0

attached base packages:
[1] utils datasets graphics grDevices stats methods  base

other attached packages:

[1] Epi_2.29

loaded via a namespace (and not attached):
[1] cmprsk_2.2-7 z00_1.8-0 MASS_7.3-49 compiler_3.4.4
[5] Matrix_1.2-14 plyr_1.8.4 parallel_3.4.4 survival_2.42-3
[9] etm_1.0.1 Rcpp_0.12.12 splines_3.4.4 grid_3.4.4

[13] data.table_1.10.4 numDeriv_2016.8-1 lattice_0.20-35

In the Epi package, follow-up in a cohort is represented in a Lexis object. A Lexis object
is a data frame with a bit of extra structure representing the follow-up. For the nickel
data we would construct a Lexis object by:

> data( nickel )

> nicL <- Lexis( entry = list( per=agein+dob,

+ age=agein,

tfh=agein-agelst ),

exit = list( age=ageout ),

exit.status = ( icd JinJ c(162,163) )*1,
data = nickel )

NOTE: entry.status has been set to 0 for all.

+ + + +

The entry argument is a named list with the entry points on each of the timescales we
want to use. It defines the names of the timescales and the entry points of the follow-up of
each person. The exit argument gives the exit time on one of the timescales, so the name
of the element in this list must match one of the names of the entry list. This is sufficient,
because the follow-up time on all time scales is the same, in this case ageout - agein.
Now take a look at the result:

> str( nickel )

'data.frame': 679 obs. of 7 variables:

$ id :num 3 46 89 10 15 16 17 18 ...

$ icd :num O 162 163 527 150 163 334 160 420 12 ...
$ exposure: num 55 10 9020 0.500 ...

$ dob : num 1889 1886 1881 1886 1880 ...

$ agelst : num 17.5 23.2 25.2 24.7 30 ...

$ agein : num 45.2 48.3 53 47.9 54.7 ...

$ ageout : num 93 63.3 54.2 69.7 76.8 ...
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> str( nicL )

Classes ‘Lexis’ and 'data.frame': 679 obs. of 14 variables:
$ per : num 1934 1934 1934 1934 1934 ...
$ age : num 45.2 48.3 53 47.9 54.7 ...
$ tfh :num 27.7 25.1 27.7 23.2 24.8 ...
$ lex.dur : num 47.75 15 1.17 21.77 22.1 ...
$ lex.Cst :num 0000000000 ...
$ lex.Xst :num 0110010000 ...
$ lex.id : int 123456789 10 ...
$ id :num 3 46 89 10 15 16 17 18 ...
$ icd :num O 162 163 527 150 163 334 160 420 12 ...
$ exposure: num 55 10 9020 0.500 ...
$ dob : num 1889 1886 1881 1886 1880 ...
$ agelst : num 17.5 23.2 25.2 24.7 30 ...
$ agein : num 45.2 48.3 53 47.9 54.7 ...
$ ageout : num 93 63.3 54.2 69.7 76.8 ...

attr(*, "time.scales")= chr "per" "age" "tfh"
attr(*, "time.since")= chr "" " "o

attr(*, "breaks")=List of 3

..$ per: NULL

..$ age: NULL

..$ tfh: NULL

> head( nicL )

OO WN -

1934.
1934.
1934.
1934.
1934.
1934.

per
246
246
246
246
246
246

agelst

OO WN -

17.4808
23.1864
25.2452
24.7206
29.9575
21.2877

The Lexis

There is a summary function for Lexis objects that list the number of transitions and

45.
48.
52.
47.
54.

44
a
45.
48.
52.
47.
54.
44

age
2273
2684
9917
9067
7465
.3314
gein
2273
2684
9917
9067
7465
3314

27.
25.
27.
23.
24.

23

ag
92.
63.
54.
69.
76.
62.

tfh
7465
0820
7465
1861
7890
.0437
eout
9808
2712
1644
6794
8442
5413

lex.dur lex.Cst lex.Xst lex.i
47.7535 0 0
15.0028
1.1727
21.7727
22.0977
18.2099

OO O OO
= O O =

icd exposure

0
162
163
527
150
163

5
5
10

N O ©

1889.
1885.
1881.
1886.
1879.
1889.

dob
019
978
255
340
500
915

object nicL has a variable for each timescale which is the entry point on this
timescale. The follow-up time is in the variable lex.dur (duration).

records as well as the total amount of follow-up time:

> summary( nicL )

Transitions:
To
From 0 1 Records: Events: Risk time: Persons:
0 542 137 679 137 15348.06 679

We defined the exit status to be death from lung cancer (ICD7 162,163), i.e. this variable
is 1 if follow-up ended with a death from this cause. If follow-up ended alive or by death
from another cause, the exit status is coded 0, i.e. as a censoring.

Note that the exit status is in the variable lex.Xst (eXit status. The variable lex.Cst
is the state where the follow-up takes place (Current status), in this case 0 (alive).
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Figure 1.2: Lexis diagram of the nickel dataset; left panel the default version, right panel
with bells and whistles. The red lines are for persons with exposure> 0, so it is pretty evident
that the oldest ones are the exposed part of the cohort.

It is possible to get a visualization of the follow-up along the timescales chosen by using
the plot method for Lexis objects. nicL is an object of class Lexis, so using the function
plot () on it means that R will look for the function plot.Lexis and use this function.

> plot( nicL )

The function allows quite a bit of control over the output, and a points.Lexis function
allows plotting of the endpoints of follow-up:

> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> plot( nicL, 1:2, lwd=1, col=c("blue","red")[(nicL$exp>0)+1],
grid=TRUE, lty.grid=1, col.grid=gray(0.7),
x1im=1900+c(0,90), xaxs="i",
ylim= 10+c(0,90), yaxs="i", las=1 )
points( nicL, 1:2, pch=c(NA,3) [nicL$lex.Xst+1],
col="lightgray", lwd=3, cex=1.5 )
points( nicL, 1:2, pch=c(NA,3) [nicL$lex.Xst+1],
col=c("blue", "red") [(nicL$exp>0)+1], lwd=1, cex=1.5 )

+V+V+ o+ o+

The results of these two plotting commands are in figure 77.



Chapter 2

Subdividing follow-up for analysis

2.1 Splitting the follow-up time along a timescale

The follow-up time in a cohort can be subdivided by for example current age. This is
achieved by the splitLexis (note that it is not called split.Lexis). This requires that
the timescale and the breakpoints on this timescale are supplied. Try:

> nicS1 <- splitlLexis( nicL, "age",

> summary( nicL )
Transitions:

To
From 0

1 Records:

0 542 137

> summary( nicS1 )

Transitions:

To
From 0
0 2073

So we see that the number of events and the amount of follow-up is the same in the two

6

79

1 Records:

137

2

210

Events: Risk time: Persons:
137 15348.06 679

Events: Risk time: Persons:
137 15348.06 679

breaks=seq(0,100,10) )

data sets; only the number of records differ — the extra records all have lex.Cst=0 and
lex.Xst=0.

To see how records are split for each individual, it is useful to list the results for a few
individuals:

> round( subset( nicS1,

lex.id P
11 4 1934.
12 4 1936.
13 4 1946.
14 5 1934.
15 5 1939.
16 5 1949.
17 6 1934.
18 6 1939.
19 6 1949.

agein ageout
11 47.91 69.68
12 47.91 69.68
13 47.91 69.68

er
25
34
34
25
50
50
25
91
91

47.
50.
60.
54.
60.
70.
44 .
50.
60.

age
91
00
00
75
00
00
33
00
00

id %inJ 8:10 ), 2 )

tfh lex.dur lex.Cst lex.Xst
23.19 2.09 0 0
25.28 10.00 0 0
35.28 9.68 0 0
24.79 5.25 0 0
30.04 10.00 0 0
40.04 6.84 0 0
23.04 5.67 0 0
28.71 10.00 0 0
38.71 2.54 0 1

© O O 0 0 0

icd exposure
527
527
527
150
150
150
163
163
163

NNNOOO WO

1886.
1886.
1886.
1879.
1879.
1879.
1889.
1889.
1889.

dob agelst

34
34
34
50
50
50
91
91
91

24.
24.
24.
29.
29.
29.
21.
21.
21.

72
72
72
96
96
96
29
29
29
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14 54.75 76.84
15 54.75 76.84
16 54.75 76.84
17 44 .33 62.54
18 44.33 62.54
19 44 .33 62.54

The resulting object, nicS1, is again a Lexis object, and so follow-up may be split further
along another timescale. Subsequently we list the results for individuals 8, 9 and 10 again:

> nicS2 <- splitLexis( nicS1, "tfh", breaks=c(0,1,5,10,20,30,100) )
> round( subset( nicS2, id Jin), 8:10 ), 2 )

lex.id per age  tfh lex.dur lex.Cst lex.Xst id icd exposure dob agelst
13 4 1934.25 47.91 23.19 2.09 0 0 8 527 9 1886.34 24.72
14 4 1936.34 50.00 25.28 4.72 0 0 8 527 9 1886.34 24.72
15 4 1941.06 54.72 30.00 5.28 0 0 8 527 9 1886.34 24.72
16 4 1946.34 60.00 35.28 9.68 0 0 8 527 9 1886.34 24.72
17 5 1934.25 54.75 24.79 5.21 0 0 9 150 0 1879.50 29.96
18 5 1939.46 59.96 30.00 0.04 0 0 9 150 0 1879.50 29.96
19 5 1939.50 60.00 30.04 10.00 0 0 9 150 0 1879.50 29.96
20 5 1949.50 70.00 40.04 6.84 0 0 9 150 0 1879.50 29.96
21 6 1934.25 44.33 23.04 5.67 0 0 10 163 2 1889.91 21.29
22 6 1939.91 50.00 28.71 1.29 0 0 10 163 2 1889.91 21.29
23 6 1941.20 51.29 30.00 8.71 0 0 10 163 2 1889.91 21.29
24 6 1949.91 60.00 38.71 2.54 0 1 10 163 2 1889.91 21.29

agein ageout
13 47.91 69.68
14 47.91 69.68
15 47.91 69.68
16 47.91 69.68
17 54.75 76.84
18 54.75 76.84
19 54.75 76.84
20 54.75 76.84
21 44.33 62.54
22 44.33 62.54
23 44.33 62.54
24 44 .33 62.54

A more efficient (and more intuitive) way of making this double split is to use the
splitMulti function from the popEpi package:

> library( popEpi )

> nicM <- splitMulti( nicL, age = seq(0,100,10),

+ tfh = ¢(0,1,5,10,20,30,100) )
> summary( nicS2 )

Transitions:
To
From 0 1 Records: Events: Risk time: Persons:
0 2992 137 3129 137 15348.06 679

> summary( nicM )

Transitions:
To
From 0 1 Records: Events: Risk time: Persons:
0 2992 137 3129 137 15348.06 679
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So we see that the two ways of splitting data yields the same amount of follow-up, but the
results are not identical:

> identical( nicS2, nicM )
[1] FALSE

> class( nicS2 )

[1] "Lexis" "data.frame"
> class( nicM )
[1] "Lexis" "data.table" "data.frame"

As we see, this is because the nicM object also is a data.table object; the splitMulti
uses the data.table machinery which makes the splitting substantially faster — this is of
particular interest if you operate on large data sets (> 1,000,000 records).

Thus the recommended way of splitting follow-up time is by splitMulti. But you
should be aware that the result is a data.table object, which in some circumstances
behaves slightly different from data.frames. See the manual for data.table.

2.1.1 Time scales as covariates

If we want to model the effect of these timescale variables on occurrence rates, we will for
each interval use either the value of the left endpoint in each interval or the middle. There
is a function timeBand which returns either of these:

> timeBand( nicM, "age", "middle" )[1:20]
[1] 45 45 55 65 75 85 95 45 55 55 65 55 45 55 55 65 55 55 65 75

> # For nice printing and column labelling use the data.frame() function:
> data.frame( nicS2[,c("lex.id", "per", "age","tfh","lex.dur")],

+ mid.age=timeBand( nicS2, "age", "middle" ),
+ mid.t=timeBand( nicS2, "tfh", "middle" ),
+ left.t=timeBand( nicS2, "tfh", "left" ),
+ right.t=timeBand( nicS2, "tfh", "right" ),
+ fact.t=timeBand( nicS2, "tfh", "factor" ) )[1:20,]

lex.id per age tfh lex.dur mid.age mid.t left.t right.t fact.t
1 1 1934.246 45.2273 27.7465 2.2535 45 25 20 30 (20,30]
2 1 1936.500 47.4808 30.0000 2.5192 45 65 30 100 (30,100]
3 1 1939.019 50.0000 32.5192 10.0000 55 65 30 100 (30,100]
4 1 1949.019 60.0000 42.5192 10.0000 65 65 30 100 (30,100]
5 1 1959.019 70.0000 52.5192 10.0000 75 65 30 100 (30,100]
6 1 1969.019 80.0000 62.5192 10.0000 85 65 30 100 (30,100]
7 1 1979.019 90.0000 72.5192 2.9808 95 65 30 100 (30,100]
8 2 1934.246 48.2684 25.0820 1.7316 45 25 20 30 (20,30]
9 2 1935.978 50.0000 26.8136 3.1864 55 25 20 30 (20,30]
10 2 1939.164 53.1864 30.0000 6.8136 55 65 30 100 (30,100]
11 2 1945.978 60.0000 36.8136 3.2712 65 65 30 100 (30,100]
12 3 1934.246 52.9917 27.7465 1.1727 55 25 20 30 (20,30]
13 4 1934.246 47.9067 23.1861 2.0933 45 25 20 30 (20,30]
14 4 1936.340 50.0000 25.2794 4.7206 55 25 20 30 (20,30]
15 4 1941.060 54.7206 30.0000 5.2794 55 65 30 100 (30,100]
16 4 1946.340 60.0000 35.2794 9.6794 65 65 30 100 (30,100]
17 5 1934.246 54.7465 24.7890 5.2110 55 25 20 30 (20,30]
18 5 1939.457 59.9575 30.0000 0.0425 55 65 30 100 (30,100]
19 5 1939.500 60.0000 30.0425 10.0000 65 65 30 100 (30,100]
20 5 1949.500 70.0000 40.0425 6.8442 75 65 30 100 (30,100]
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Note that these are characteristics of the intervals defined by breaks=, not the midpoints
nor left or right endpoints of the actual follow-up intervals (which would be tfh and
tfh+lex.dur, respectively).

These functions are intended for modeling timescale variables as factors (categorical
variables) in which case the coding must be independent of the censoring and mortality
pattern — it should only depend on the chosen grouping of the timescale. Modeling
timescales as quantitative should not be based on these codings but directly on the values
of the time-scale variables.

2.1.2 Differences between time scales

The midpoint (as well as the left and right interval endpoint) should be used with caution
if the variable agelst is modeled too; the age at hire is logically equal to the difference
between current age (age) and time since hire (thf):

> summary( (nicS2$%age-nicS2$tfh) - nicS2%agelst )

Min. 1st Qu. Median Mean 3rd Qu. Max.
-7.105e-15 0.000e+00 0.000e+00 2.214e-17 0.000e+00 7.105e-15

This calculation refer to the start of each interval — the time scale variables in the Lexis
object. But when using the middle of the intervals, this relationship is not preserved:

> summary( timeBand( nicS2, "age", "middle" ) -

+ timeBand( nicS2, "tfh", "middle" ) - nicS2$agelst )

Min. 1st Qu. Median Mean 3rd Qu. Max.
-39.958 -24.178 -5.103 -10.129 2.575 12.519

If all three variable are to be included in a model, you must make sure that the substantial
relationship between the variables be maintained. One way is to recompute age at first hire
from the two midpoint variables, but more straightforward would be to use the left
endpoint of the intervals, that is the time scale variables in the Lexis object. The latter
approach however requires that the follow-up is split in fairly small chunks.

2.2 Cutting follow up time at a specific date

If we have a recording of the date of a specific event as for example recovery or relapse, we
may classify follow-up time as being before or after this intermediate event, but it requires
that follow-up records that straddle the event be cut into two record. This is achieved with
the function cutLexis, which takes three arguments: the time point, the timescale, and
the value of the (new) state following the date.

Now we define the age for the nickel workers where the cumulative exposure exceeds 50
exposure years:

> subset( nicL, id Jinj 8:10 )

per age tfh lex.dur lex.Cst lex.Xst lex.id id icd exposure dob
4 1934.246 47.9067 23.1861 21.7727 0 0 4 8 527 9 1886.340
5 1934.246 54.7465 24.7890 22.0977 0 0 5 9 150 0 1879.500
6 1934.246 44.3314 23.0437 18.2099 0 1 6 10 163 2 1889.915

agelst agein ageout
24.7206 47.9067 69.6794
29.9575 54.7465 76.8442
21.2877 44.3314 62.5413

o O
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> agehi <- nicL$agelst + 50
> nicC <- cutlexis( data =

+

+
+
+
>

683

5
6
68

683

5
6
68

(The precursor.states= argument is explained below). Note that individual 6 has had

cut =

timescale =

new.state

precursor.states =
subset( nicC, id J,inj), 8:10 )

1%

er

age

tfh lex.dur lex.Cst lex.Xst lex.id

/ nicL$exposure

ni

cL,

agehi,
Ilag<e n ,

=2

0

1934.246 44.3314 23.0437

agein ageout

29.9575 54.7465 76.8442
21.2877 44.3314 62.5413
5 21.2877 44.3314 62.5413

)

1934.246 47.9067 23.1861 21.7727
1934.246 54.7465 24.7890 22.0977
1.9563
5 1936.203 46.2877 25.0000 16.2536
agelst
24.7206 47.9067 69.6794

2

0
0
2

2

0
2
1

4
5
6 1
6 1

8 527
9 150
0 163
0 163

id icd exposure

dob

9 1886.340
0 1879.500
2 1889.915
2 1889.915

his follow-up split at 25 years since hire where 50 exposure-years were attained. This could
also have been achieved in the split dataset nicS2 instead of nicL, try:

> subset( nicS2, id 7in} 8:
lex.id

13
14
15
16
17
18
19
20
21
22
23
24

13
14
15
16
17
18
19
20
21
22
23
24

OO OO 0101 01O WD

agelst

24.
24.
. 7206
24.
29.
29.
29.
29.
21.
21.
21.
21.

> agehi <-

24

7206
7206

7206
9575
9575
9575
9575
2877
2877
2877
2877

1934.
1936.
1941.
1946.
1934.
1939.
1939.
1949.
1934.
1939.
1941.
1949.

a
47.
47.
a7
aT7.
54.
54.
54.
54.
44
44
44 .
44 .

per
246
340
060
340
246
457
500
500
246
915
203
915
gein
9067
9067

.9067

9067
7465
7465
7465
7465
3314
3314
3314
3314

47.
50.
54.
60.
54.
59.
60.
70.
44 .
50.
51.
60.

age
9067
0000
7206
0000
7465
9575
0000
0000
3314
0000
2877
0000

ageout

69.
69.
69.
69.
76.
76.
76.
76.
62.
62.
62.
62.

nicS2$agelst + 50

6794
6794
6794
6794
8442
8442
8442
8442
5413
5413
5413
5413

> nicS2C <- cutlexis( data

+

+
+
+
>

cut

timescale
new.state
precursor.states
subset ( nicS2C, id J/inj 8:10 )

10

23.
25.
30.
35.
24.
30.
30.
40.
23.
28.
30.
38.

)

tfh lex.dur lex.Cst lex.Xst

1861
2794
0000
2794
7890
0000
0425
0425
0437
7123
0000
7123

N0 O01OO OO0 OO N

.0933
. 7206
.2794
.6794
.2110
.0425
.0000
.8442
.6686
L2877
L7123
.5413

0

[eNeoNoNoNoNoNoNoNoNoNe]

/ nicS2%exposure
= nicS2,
= agehi,

"age Il’
2

_O’)

HOOOOOOOOOO0OO0o

© O O W o A

icd exposure
527
527
527
527
150
150
150
150
163
163
163
163

NNNNNOOOO WWWOWO

1886.
1886.
1886.
1886.
1879.
1879.
1879.
1879.
1889.
1889.
1889.
1889.

dob
340
340
340
340
500
500
500
500
915
915
915
915
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lex.id per age tfh lex.dur lex.Cst lex.Xst id icd exposure
3142 4 1934.246 47.9067 23.1861 2.0933 2 2 8 527 9 1886.
3143 4 1936.340 50.0000 25.2794 4.7206 2 2 8 527 9 1886.
3144 4 1941.060 54.7206 30.0000 5.2794 2 2 8 527 9 1886.
3145 4 1946.340 60.0000 35.2794 9.6794 2 2 8 527 9 1886.
17 5 1934.246 54.7465 24.7890 5.2110 0 0 9 150 0 1879.
18 5 1939.457 59.9575 30.0000 0.0425 0 0 9 150 0 1879.
19 5 1939.500 60.0000 30.0425 10.0000 0 0 9 150 0 1879.
20 5 1949.500 70.0000 40.0425 6.8442 0 0 9 150 0 1879.
21 6 1934.246 44.3314 23.0437 1.9563 0 2 10 163 2 1889.
3150 6 1936.203 46.2877 25.0000 3.7123 2 2 10 163 2 1889.
3151 6 1939.915 50.0000 28.7123 1.2877 2 2 10 163 2 1889.
3152 6 1941.203 51.2877 30.0000 8.7123 2 2 10 163 2 1889.
3153 6 1949.915 60.0000 38.7123 2.5413 2 1 10 163 2 1889.

agelst agein ageout
3142 24.7206 47.9067 69.6794
3143 24.7206 47.9067 69.6794
3144 24.7206 47.9067 69.6794
3145 24.7206 47.9067 69.6794
17 29.9575 54.7465 76.8442
18  29.9575 54.7465 76.8442
19  29.9575 54.7465 76.8442
20  29.9575 54.7465 76.8442
21 21.2877 44.3314 62.5413
3150 21.2877 44.3314 62.5413
3151 21.2877 44.3314 62.5413
3152 21.2877 44.3314 62.5413
3153 21.2877 44.3314 62.5413

The same results would have emerged if we had used the nicM dataset (the data.table
object). Mathematicians would say that splitLexis and cutLexis are commutative.

Note that follow-up subsequent to the event is classified as being in state 2, but that the
final transition to state 1 (death from lung cancer) is preserved. This is the point of the
precursor.states= argument. It names the states (in this case 0, “Alive”) that will be
over-written by new.state (in this case state 2, “High exposure”), while state 1 (“Dead”)
should not be updated even if it is after the time where the persons moves to state 2. In
other words, only state 0 is a precursor to state 2, state 1 is always subsequent to state 2.
Even if you at a high exposure level, death is pretty final.

If the intermediate event is to be used as a time-dependent variable in a Cox-model, then
lex.Cst should be used as the time-dependent variable, and lex.Xst==1 as the event.

dob
340
340
340
340
500
500
500
500
915
915
915
915
915



Chapter 3

Modeling rates

3.1 Background

The purpose of subdividing follow-up data is to be able to model the effects of the time
scale variables as parametric functions.

In a model that assumes a constant occurrence rate in each of the intervals the likelihood
contribution from each interval is the same as the likelihood contribution from a Poisson
variate D, say, with mean A/ where A\ is the rate and /¢ is the interval length, and where the
value of the variate D is 1 or 0 according to whether an event has occurred or not.
Moreover, the likelihood contributions from all follow-up intervals from a single person are
conditionally independent (conditional on having survived till the start of the interval in
question). This implies that the total contribution to the likelihood from a single person is
a product of terms, and hence the same as the likelihood of a number of independent
Poisson terms, one from each interval.

Parametric modeling of the rates is obtained by using the value of the timescale for each
interval as quantitative explanatory variables, using for example splines. Thus the model
will be one where the rate is assumed constant in each interval, but where a parametric
form of the size of the rate in each interval is imposed by the model, using the timescale as
a covariate.

3.2 Practicalities

In the nickel worker study we might want to look at the effects of age and time since hire.
If we want to use splines we must allocate knots for anchoring the splines at each of the
time scales, either by some ad hoc method or by using some sort of penalized splines. The
letter will not be treated here.
Here we shall use the former approach and allocate 5 knots on each of the two
time-scales. We allocate knots so that we have the event evenly distributed between the
knots:
> (a.kn <- with( subset( nicM, lex.Xst==1 ), quantile( age+lex.dur, (1:5-0.5)/5 ) ) )

10% 30% 50% 70% 90%
50.11874 55.61674 61.09590 64.88704 73.32220

> ( t.kn <- with( subset( nicM, lex.Xst==1 ), quantile( tfh+lex.dur, (1:5-0.5)/5 ) ) )

10Y, 30% 50% 70% 90%
24 .25572 30.02202 34.00440 39.84592 45.95512

11
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In the Epi package there is a convenience wrapper for the natural spline generator ns, Ns,
that takes the smallest and the largest of a set of supplied knots to be the boundary knots.

3.3 Models for rates

3.3.1 One time scale
A model that only models lung cancer mortality rates as a function of age would then be:

> ma <- glm( (lex.Xst==1) ~ Ns(age,knots=a.kn),

+ family = poisson,

+ offset = log(lex.dur),
+ data = niclM )

> summary( ma )

Call:

glm(formula = (lex.Xst == 1) ~ Ns(age, knots = a.kn), family = poisson,
data = nicM, offset = log(lex.dur))

Deviance Residuals:
Min 1Q Median 3Q Max
-0.5074 -0.3896 -0.2143 -0.1203 3.7904

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.6591 0.1324 -35.199 < 2e-16
Ns(age, knots = a.kn)1l 0.1671 0.2970 0.563 0.57371
Ns(age, knots = a.kn)2 -0.1315 0.3727 -0.353 0.72411
Ns(age, knots = a.kn)3  0.7827 0.2885 2.713 0.00667
Ns(age, knots = a.kn)4 -0.3717 0.2780 -1.337 0.18125

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1024.38 on 3128 degrees of freedom
Residual deviance: 979.16 on 3124 degrees of freedom
AIC: 1263.2

Number of Fisher Scoring iterations: 7

The offset, log(lex.dur) comes from the fact that the likelihood for the follow-up data is
the same as that for independent Poisson variates with mean A\¢, and that the default link
function for the Poisson family is the log, so that we are using a linear model for the
log-mean, that is log(\) + log(¢). But when we want a model for the log-rate (log())), the
term log(¢) must be included as a covariate with regression coefficient fixed to 1; a so-called
offset.

The parameters from the model do not have any direct interpretation per se, but we can
compute the estimated lung cancer incidence rates for a range of ages using ci.pred with a
suitably defined prediction data frame. Note that we must specify all covariates in the
model, also the variable in the offset, 1lex.dur. We set the latter to 1000, because we want
the lung cancer mortality rates per 1000 PY. By default ci.pred yields a prediction on the
response-scale, that is the rate-scale:

> nd <- data.frame( age=40:85, lex.dur=1000 )
> pr.a <- ci.pred( ma, newdata = nd )
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> matplot( nd$age, pr.a,

+ type="1", 1lty=1, col=1, 1lwd=c(3,1,1),
+ log="y", xlab="Age (years)",
+ ylab="Lunng cancer mortality per 1000 PY")
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Figure 3.1: Lung cancer mortality among Nickel smelter workers by age. We see that the
rates increase till about 55 years, and from then on is approzimately flat. ./flup-pr-a

3.3.2 More time scales

There may however also be an effect of time since hire too, so we can add this term to the
model:

> mat <- update( ma, . ~ . + Ns(tfh,knots=t.kn) )
> summary( mat )
Call:

glm(formula = (lex.Xst == 1) ~ Ns(age, knots = a.kn) + Ns(tfh,
knots = t.kn), family = poisson, data = nicM, offset = log(lex.dur))

Deviance Residuals:
Min 1Q Median 3Q Max
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-0.6308 -0.3730 -0.2170 -0.1180 3.8903

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.65125 0.14844 -31.335 <2e-16
Ns(age, knots = a.kn)1l 0.19029 0.32601 0.584 0.5594
Ns(age, knots = a.kn)2 0.04239 0.40857 0.104 0.9174
Ns(age, knots = a.kn)3 0.87848 0.37395 2.349 0.0188
Ns(age, knots = a.kn)4 0.08124 0.37567 0.216 0.8288
Ns(tfh, knots = t.kn)1 0.05961 0.45702 0.130 0.8962
Ns(tfh, knots = t.kn)2 -0.30254 0.39214 -0.771 0.4404
Ns(tfh, knots = t.kn)3 -0.08144 0.37493 -0.217 0.8281
Ns(tfh, knots = t.kn)4 -0.63400 0.34055 -1.862 0.0626

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1024.4 on 3128 degrees of freedom
Residual deviance: 970.7 on 3120 degrees of freedom
AIC: 1262.7

Number of Fisher Scoring iterations: 7

This model has two time scales, age and time since hire, so it makes little sense to report
the effect of age for a fized value of time since hire — the time since hire increases by age.
Instead we can show the mortality rates for persons hired at different ages, and report the
joint effect of increasing age and time since hire.

In order to get a feeling for the values that can be use we look at agelst

> summary( nickel$agelst )

Min. 1st Qu. Median Mean 3rd Qu. Max.
10.78 21.80 26.16 26.74 30.63 52.19

Thus we shall show mortality rates in ages 20-90 for persons hired in ages 15, 25, 35 and
45:

> nd <- data.frame( expand.grid( age=c(20:90,NA), agelst=seq(15,45,10) ) )
> nd <- transform( nd, tfh = ifelse( age > agelst, age-agelst, NA ),

+ lex.dur = 1000 )

> # makes no sense to have age < agelst

> nd <- transform( nd, age = ifelse( age > agelst, age, NA ) )

> head( nd )

age agelst tfh lex.dur

1 20 156 b5 1000
2 21 156 6 1000
3 22 15 7 1000
4 23 15 8 1000
5 24 15 9 1000
6 25 15 10 1000

With this in place we can plot the estimated rates as before, only now we will get 4
separate lines. The purpose of inserting an NA on the age-scale in the expand.grid is that
the different instances of agelst be separated by NAs, and hence will not be connected
when we plot the curves. The downside of this trick is that lines cannot be plotted with
different colors or symbols.
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> pr.at <- ci.pred( mat, newdata = nd )
> matplot( nd$age, pr.at,

+ type="1", 1lty=1, col=1, 1lwd=c(3,1,1),
+ log="y", xlab="Age (years)",
+ ylab="Lunng cancer mortality per 1000 PY")
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Figure 3.2: Lung cancer mortality among Nickel smelter workers by age and age at hire 15,
25,85 and 45. FEach line (except the first) starts at the age of hire; we see that the later in
life you are hired, the smaller the initial risk, but the higher the eventual risk of lung cancer

death.

./flup-pr-at

We can check whether the effect of time since hire is actually improving the model:

> anova( ma, mat, test="Chisq" )

Analysis of Deviance Table

Model 1: (lex.Xst == 1) ~ Ns(age, knots = a.kn)

Model 2: (lex.Xst == 1) ~ Ns(age, knots = a.kn) + Ns(tfh, knots
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 3124 979.16

2 3120 970.70 4 8.4626 0.07603

We see a pretty strong indication that this is the case.

= t.kn)
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3.3.3 Difference between time scales

However it might be the case that it really is the age at first hire that is the main
determinant (recall that age — thf = agelst), so we could fit a model with this variable
instead — a model with only 1 timescale, namely age.

> ( f.kn <- with( subset( nicM, lex.Xst==1 ), quantile( agelst, (1:5-0.5)/5 ) ) )

10% 30% 50% 70% 90%
20.25860 22.55422 26.00000 28.36578 33.96910

> maf <- update( ma, . ~ . + Ns(agelst,knots=f.kn) )

> summary( maf )

Call:

glm(formula = (lex.Xst == 1) ~ Ns(age, knots = a.kn) + Ns(agelst,

knots = f.kn), family = poisson, data = nicM, offset = log(lex.dur))

Deviance Residuals:
Min 1Q Median 3Q Max
-0.5696 -0.3671 -0.2257 -0.1197 3.7777

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -4.62646 0.17564 -26.340 < 2e-16
Ns(age, knots = a.kn)1 0.21589 0.29742 0.726 0.46792
Ns(age, knots = a.kn)2 -0.06427 0.37653 -0.171 0.86446
Ns(age, knots = a.kn)3 0.79456 0.29345 2.708 0.00678
Ns(age, knots = a.kn)4 -0.31305 0.27976 -1.119 0.26314
Ns(agelst, knots = f.kn)1 -0.15145 0.38279 -0.396 0.69237
Ns(agelst, knots = f.kn)2 0.04607 0.27980 0.165 0.86923
Ns(agelst, knots = f.kn)3 0.26374 0.26156 1.008 0.31331
Ns(agelst, knots = f.kn)4 -0.22878 0.23117 -0.990 0.32234

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1024.4 on 3128 degrees of freedom
Residual deviance: 973.2 on 3120 degrees of freedom
AIC: 1265.2

Number of Fisher Scoring iterations: 7
> anova( maf, ma, mat, test="Chisq" )

Analysis of Deviance Table

Model 1: (lex.Xst == 1) ~ Ns(age, knots = a.kn) + Ns(agelst, knots = f.kn)

Model 2: (lex.Xst == 1) ~ Ns(age, knots = a.kn)

Model 3: (lex.Xst == 1) ~ Ns(age, knots = a.kn) + Ns(tfh, knots = t.kn)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 3120 973.20
2 3124 979.16 -4 -5.9624 0.20198
3 3120 970.70 4  8.4626 0.07603

We see that there is much less indication that the age at first hire has an effect.
For the sake of completeness we can draw the predicted values from the maf model on
top of the ones from the mat model:
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> pr.af <- ci.pred( maf, newdata = nd )
> matplot( nd$age, pr.at,

+ type="1", 1lty=1, col=1, 1lwd=c(3,1,1),

+ log="y", xlab="Age (years)",

+ ylab="Lunng cancer mortality per 1000 PY")

> matlines( nd$age, pr.af,

+ type="1", 1ty=1, col=2, 1lwd=c(3,0,0) )
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Figure 3.3: Lung cancer mortality among Nickel smelter workers by age and age at hire 15,
25,85 and 45. Each line (except the first) starts at the age of hire; we see that the later in
life you are hired, the smaller the initial risk, but the higher the eventual risk of lung cancer
death. The red lines are from the model maf where the lines are constrained to be parallel,
and which gives a worse fit to data. ./flup-pr-at-af

3.3.4 The complete picture — exercise

We could fit the remaining models where one or more of the three variables are included,
and compare all of them:

> maft <- update( mat, . ~ . + Ns(agelst,knots=f.kn) )
> summary( maft )
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Call:

glm(formula = (lex.Xst == 1) ~ Ns(age, knots = a.kn) + Ns(tfh,
knots = t.kn) + Ns(agelst, knots = f.kn), family = poisson,
data = nicM, offset = log(lex.dur))

Deviance Residuals:
Min 1Q Median 3Q Max
-0.5899 -0.3579 -0.2224 -0.1185 3.8687

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z])

(Intercept) -4.71537 0.16481 -28.612 <2e-16
Ns(age, knots = a.kn)1l 0.01671 0.35152 0.048 0.9621
Ns(age, knots = a.kn)2 -0.11682 0.44638 -0.262 0.7935
Ns(age, knots = a.kn)3 0.47689 0.50638 0.942 0.3463
Ns(age, knots = a.kn)4 -0.18241 0.47318 -0.385 0.6999
Ns(tfh, knots = t.kn)1 0.35272 0.51329 0.687  0.4920
Ns(tfh, knots = t.kn)2 -0.11034 0.43043 -0.256  0.7977
Ns(tfh, knots = t.kn)3 0.26874 0.49133 0.547 0.5844
Ns(tfh, knots = t.kn)4 -0.30302 0.43585 -0.695  0.4869
Ns(agelst, knots = f.kn)1 -0.10650 0.37476 -0.284 0.7763
Ns(agelst, knots = f.kn)2 0.17245 0.20063 0.860  0.3900
Ns(agelst, knots = f.kn)3 0.47357 0.24239 1.954 0.0507
Ns(agelst, knots = f.kn)4 NA NA NA NA

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1024.38 on 3128 degrees of freedom
Residual deviance: 966.31 on 3117 degrees of freedom
AIC: 1264.3

Number of Fisher Scoring iterations: 7

> mft <- update( maft, . ~ . - Ns(age,knots=a.kn) )
> mf <- update( maf , . ~ . - Ns(age,knots=a.kn) )
> mt <- update( mat , . ~ . - Ns(age,knots=a.kn) )
> allp <- anova( maft, mat, ma, maf, mf, mft, mt, mat,
+ maf, maft, mft,
+ test="Chisq" )
> mall <- as.matrix( allp )
> Cblnd( mod = c(”maft u, "mat u, "ma”, "maf”, "mf”, "mft u, "mt u, "mat u, "maf", "maft ", "mft n),
+ round( allp[,1:5], 3 ) )

mod Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 maft 3117 966.306 NA NA NA
2 mat 3120 970.697 -3 -4.391 0.222
3 ma 3124 979.160 -4  -8.463 0.076
4 maf 3120 973.197 4 5.962 0.202
5 mf 3124 1011.593 -4 -38.396 0.000
6 mft 3120 971.120 4  40.473 0.000
7 mt 3124 985.734 -4 -14.614 0.006
8 mat 3120 970.697 4  15.037 0.005
9 maf 3120 973.197 0 -2.500 NA
10 maft 3117 966.306 3 6.892 0.075
11 mft 3120 971.120 -3 -4.814 0.186

1. Explain why there are NAs among the parameters in the model maf.
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2. Draw a graph (a “DAG”) with the models as nodes and the tests as vertices, put the
p-values on the vertices and use the result to argue that the model with age an time
since hire is actually the most sensible description in this case.



Chapter 4

Competing risks — multiple types of

events

If we want to consider death from lung cancer and death from other causes as separate
as for example 1 and 2.

events we can code these

> data( nickel )
> nicL <- Lexis( entry
+

exit
exit.status
data

NOTE: entry.status has

+ 4+ + +

> summary( nicL )

Transitions:
To

= list( per =

age
tfh
list( age
= ( icd > 0
= nickel )
been set to

From O 1 2 Records: Events:
0 47 495 137 679 632

> subset( nicL, id /inj 8:10 )

per age

N

tfh lex.dur

1934.246 47.9067 23.1861 21.7727

5 1934.246 54.7465 24.7890 22.0977

6 1934.246 44.3314 23.0437 18.2099
agelst agein ageout

4 24.7206 47.9067 69.6794

5 29.9575 54.7465 76.8442

6 21.2877 44.3314 62.5413

agein+dob,

agein,

agein-agelst ),

ageout ),

+ ( icd %inj c(162,163) ),

for all.

Risk time: Persons:

15348.06 679
lex.Cst lex.Xst lex.id id icd exposure dob
0 1 4 8 527 9 1886.340
0 1 5 9 150 0 1879.500
0 2 6 10 163 2 1889.915

In order to have a more readable output we can label the states, we can enter the names of
example:

these in the states parameter, try for

nicL <- Lexis( entry

exit.status
data
states

NOTE: entry.status has

>
+
+
+ exit
+
+
+

age

tfh
= list( age
= ( icd > 0
= nickel,

list( per =

)

agein+dob,

agein,

agein-agelst ),

ageout ),

+ ( icd 7inj c(162,163) ),

= c("Alive","D.oth","D.lung") )
been set to 0 for all.

20
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> summary( nicL )

Transitions:
To
From Alive D.oth D.lung Records: Events: Risk time: Persons:
Alive 47 495 137 679 632  15348.06 679

> str( nicL )

Classes ‘Lexis’ and 'data.frame': 679 obs. of 14 variables:

$ per : num 1934 1934 1934 1934 1934 ...

$ age : num 45.2 48.3 53 47.9 54.7 ...

$ tfh :num 27.7 25.1 27.7 23.2 24.8 ...

$ lex.dur : num 47.75 15 1.17 21.77 22.1

$ lex.Cst : Factor w/ 3 levels "Alive","D.oth",..: 1111111111
$ lex.Xst : Factor w/ 3 levels "Alive","D.oth",..: 1 332232222
$ lex.id : int 123456789 10 ...

$ id :num 3 46 89 10 15 16 17 18 ...

$ icd :num O 162 163 527 150 163 334 160 420 12 ...

$ exposure: num 55 10 902 00.500 ...

$ dob : num 1889 1886 1881 1886 1880 ...

$ agelst : num 17.5 23.2 25.2 24.7 30 ...

$ agein : num 45.2 48.3 53 47.9 54.7 ...

$ ageout : num 93 63.3 54.2 69.7 76.8 ...

attr(*, "time.scales")= chr '"per" "age" "tfh"
attr(*, "time.since")= chr "" "m v

- attr(x, "breaks")=List of 3

..$ per: NULL

..$ age: NULL

..$ tfh: NULL

Note that the Lexis function automatically assumes that all persons enter in the first level
(given in the states= argument), corresponding to the numerical values given in
exit.status.

When we cut at a date as in this case, the date where cumulative exposure exceeds 50
exposure-years, we get the follow-up after the date classified as being in the new state if
the exit (lex.Xst) was to a state we defined as one of the precursor.states:

> nicL$agehi <- nicL$agelst + 50 / nicL$exposure
> nicC <- cutLexis( data = nicL,

+ cut = nicL$agehi,
+ timescale = "age",
+ new.state = "HiExp",
+ precursor.states = "Alive" )
> subset( nicC, id /inj 8:10 )
per age tfh lex.dur lex.Cst lex.Xst lex.id id icd exposure dob

683 1934.246 47.9067 23.1861 21.7727 HiExp D.oth 4 8 527 9 1886.340
5 1934.246 54.7465 24.7890 22.0977 Alive D.oth 5 9 150 0 1879.500
6 1934.246 44.3314 23.0437 1.9563 Alive  HiExp 6 10 163 2 1889.915
685 1936.203 46.2877 25.0000 16.2536 HiExp D.lung 6 10 163 2 1889.915

agelst agein ageout agehi
683 24.7206 47.9067 69.6794 30.27616
5 29.9575 54.7465 76.8442 Inf

6 21.2877 44.3314 62.5413 46.28770
685 21.2877 44.3314 62.5413 46.28770

> summary( nicC, scale=1000 )
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Transitions:
To
From Alive HiExp D.oth D.lung Records: Events: Risk time: Persons:
Alive 39 83 279 65 466 427 10.77 466
HiExp 0 8 216 72 296 288 4.58 296
Sum 39 91 495 137 762 715 15.35 679

Note that the persons-years is the same, but that the number of events has changed. This
is because events are now defined as any transition, including the transitions to HiExp.

Also note that (so far) it is necessary to specify the variable with the cut points in full,
using only cut=agehi would give an error.

4.1 Subdividing states

It may be of interest to subdivide the states following the intermediate event according to
whether the event has occurred or not. That is done by the argument split.states=TRUE.

Moreover, it will also often be of interest to introduce a new timescale indicating the
time since intermediate event. This can be done by the argument new.scale=TRUE,
alternatively new.scale="tfe", as illustrated here:

> nicC <- cutLexis( data = nicL,
+ cut = nicL$agehi,
+ timescale = "age",
+ new.state = "HiExp",
+ new.scale = "tfe",
+ split.states = TRUE,
+ precursor.states = "Alive" )
> subset( nicC, id /inj 8:10 )
per age tfh tfe lex.dur lex.Cst lex.Xst lex.id id icd
683 1934.246 47.9067 23.1861 17.63054 21.7727 HiExp D.oth(HiExp) 4 8 527
5 1934.246 54.7465 24.7890 NA 22.0977  Alive D.oth 5 9 150
6  1934.246 44.3314 23.0437 NA 1.9563  Alive HiExp 6 10 163
685 1936.203 46.2877 25.0000 0.00000 16.2536  HiExp D.lung(HiExp) 6 10 163
exposure dob agelst agein ageout agehi
683 9 1886.340 24.7206 47.9067 69.6794 30.27616
5 0 1879.500 29.9575 54.7465 76.8442 Inf
6 2 1889.915 21.2877 44.3314 62.5413 46.28770
685 2 1889.915 21.2877 44.3314 62.5413 46.28770

> summary( nicC, scale=1000, timeScales=TRUE )

Transitions:
To
From Alive HiExp D.oth D.lung D.lung(HiExp) D.oth(HiExp) Records: Events: Risk time:
Alive 39 83 279 65 0 0 466 427 10.77
HiExp 0 8 0 0 72 216 296 288 4.58
Sum 39 91 279 65 72 216 762 715 15.35
Transitions:
To
From Persons:
Alive 466
HiExp 296

Sum 679
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Timescales:
time.scale time.since
per
age
tfh
tfe HiExp

D wWwN -

Note that the timeScales=TRUE to summary lists the timescales available in the object, and
also indicates which of them that are defined as time since entry to a particular state. This
facility is not used here, but it is needed when simulating follow-up data — see the vignette
on simLexis.

With 6 different states it is quite difficult to get an overview of the transitions between
states from the summary (). Therefore there is function that gives a graphical display of the
states showing the transitions between the states:

> boxes( nicC, boxpos = list(x=c(10,10,80,80,80,80),

- y=c(75,25,87,63,13,37)),
+ scale.Y = 1000,
+ show.BE = TRUE )
279 D.oth
0 279
Alive (259 p
10.8 S
466 39 N6'0)\>
D.lung
83 0 65
(7.7)
' 216 D.oth(HIExp)
(47.2 0 216
HiExp 72
4.6 15.7
213 8 Nk»
D.lung(HIiEXp)
0 72

Figure 4.1: Transitions between states; the number in the middle of each box is the person-
years (in 1000s — since scale.Y=1000), the numbers at the bottom of the boxes are the
number that start, respectively end their follow-up in each state. The numbers on the arrows
are the number of transitions and crude transition rates (the latter in events per 1000 PY).
The function boxes.Lexis has a zillion arguments to fine-tune the appearance of the display
in terms of colors etc. ./flup-nic-box
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