BARD: Better Automated Redistricting

Micah Altman
Harvard University

Michael P. McDonald
George Mason University
Brookings Institution

Abstract

BARD provides a set of open source tools to automatically create and analyze redistricting plans. These tools support both scientific analysis of existing redistricting plans and citizen participation in creating new plans.

Keywords: redistricting, optimization.

1. Introduction - Automated Redistricting for Political Participation and Analysis

Legislative redistricting is among the most politically charged tasks in American politics. District lines affect which political party wins control of a legislative body, the reelection success of incumbents, and election of minority preferred candidates. A recent United States Supreme Court case, *LULAC v. Perry* [547 U.S. 2006], is instructional of the political consequences of redistricting. The Court upheld parts of a controversial 2003 Texas congressional redistricting plan that promoted the election of Republicans at the cost of incumbent Democrats, but struck down districts in the southern part of the state that disadvantaged the election of minority candidates of choice. The ruling capped a series of sometimes bizarre events that included the state legislature’s closure when members fled the state and the downfall of a powerful congressional leader due to related campaign finance violations.
Better Automated Redistricting

In the 1960s, scholars envisioned taking politics out of redistricting by automatically drawing districts using computer programs (Vickrey 1961; Weaver and Hess 1963). After all, at its most basic level, redistricting can be reduced to a simply stated (albeit computationally difficult) mathematical partitioning problem. These scholars reasoned that an algorithm following neutral criteria would draw districts blind to politics. Programs were indeed developed, however, they fell short of practical use. The problem turned out to be more computationally intensive than anticipated. The seemingly straight-forward mathematical operationalization of common redistricting goals became a debate subject as implementation of criteria is often perceived to have partisan consequences. Even today, the best commercially available software cannot automatically draw congressional or state legislative districts that would pass federal or state constitutional muster.

Redistricting’s complexity has frozen out the public from the redistricting process. Only well-funded political organizations are capable of putting together the data, equipment, and expertise needed to conduct a statewide redistricting. Thus, a conflict of interest develops at the expense of the public good. While some states have attempted redistricting reform (McDonald 2006), in most states the people who are draw the lines are the same people affected by them.

We are now revisiting advocates’ aspirations automated redistricting software. Processing power has increased tremendously even while price has decreased, data are now easily assessible on the internet, new optimization heuristics have emerged, and the flourishing open source programming community has facilitated new approaches to the automated redistricting problem. We are developing just such a program. Our program accepts a draft plan, either supplied by a user or generated randomly by one of several algorithms. The program then employs metaheuristics to improve the plan on several goals such as minimizing political bias, maximizing the number of competitive districts, or aligning districts with local political or community boundaries. Although the computational problem is too difficult to ensure that the resulting plan is optimal, it may yield a useful improvement over the starting map and may enable public interest groups to generate viable plans.

While a computer program like this would be a powerful counterbalance to entrenched political interests, it would be also of scholarly and legal interest by providing a powerful way to explore the effects of redistricting goals and constraints. By taking existing, proposed, and automatically generated hypothetical plans, and then having the computer adjust them to fit the proposed redistricting rules, we are able to systematically examine the effects such rules have and the tradeoffs those rules impose among competing redistricting goals. This methodology has long been used in the U.K. in the field of political geography, but with rare exceptions has not been applied to U.S. elections, in part because of the computational difficulties involved in applying this method to large districting problems. Furthermore, by taking an existing plan and adjusting it to better meet a
desired goal, we can explore the tradeoffs between that goal and other characteristics of the plan. In many cases, this even yields a window into the intent of the original plans author. We call our computer program BARD for \textbf{B}etter \textbf{A}utomated \textbf{R}e\textbf{D}istricting. The program contains a set of open source software (licensed under the GPL) tools to automatically create and analyze redistricting plans. These tools support both scientific analysis of existing redistricting plans and citizen participation in creating new plans.

2. A Mathematical Formulation of Redistricting Criteria

When redistricting authorities draw district boundaries they do not simply take pen to paper. They also analyze information associated with the geographic components of districts to ensure that maps satisfy legal requirements. To solve redistricting problems with a computer, we must formalize the general analogous mathematical problem. Since redistricting intrinsically involves assigning discrete blocks of geography (or discrete individuals) to districts to achieve a set of goals that is a function of the redistricting plan as a whole, the corresponding mathematical problem falls into the general area of combinatoric optimization.

Perhaps among the most important criterion is that districts must have equal population, and the way the U.S. Census Bureau releases population data further guides how the redistricting problem is formalized. These data are not reported for individuals, rather, to protect the confidentiality of respondents, data are aggregated into discrete geographic entities known as census “blocks” which roughly conform to a city block in urban areas. It is not difficult to imagine census blocks as corresponding to a points on a graph. Indeed, Geographic Information Systems (GIS) programs plot the vertices of census blocks (and higher geographic units, such as counties and cities) onto a screen for user manipulation. GIS redistricting modules enable users to assign blocks to districts through simple point and click operations.

Characteristic data associated with each block can be displayed on screen. For example, in the case of equal population requirements, blocks can be associated with their total population. If a district needs more population, a user can click on blocks adjacent to a district to identify those that will help meet a target population number. GIS programs are well-suited to display and produce summary statistics of similar data, such as racial population data, which are used to meet target

\footnote{Tolkein fans will also recognize the reference to the slayer of the dragon Smaug, perhaps the most terrible of salamanders.}

\footnote{Congressional districts must be of less than a one percent population division to ensure that they conform to legal standards. State legislative districts are permitted a ten percent population deviation under federal law, though some state laws require less deviation (Cain, Donald, and McDonald 2006).}
Better Automated Redistricting

racial population numbers to conform with the Voting Rights Act, and election data, which are used to predict political outcomes. Indeed, we might think of all such characteristic block data as belonging to the same family for optimization purposes.

Another important criterion is that districts must (usually) be contiguous, or connect. Geospatial coordinate data used to plot census blocks can also be used to determine if two blocks are connected to one another. (In normal operation, the boundaries of the blocks are used to generate a complete contiguity matrix that lists every blocks’s neighbors and thus can be used to quickly determine if a proposed plan satisfies contiguity.)

Another quasi-geographic set of criteria that are often found in state law is ‘respect’ for geographic or political features such as city or county boundaries, communities of interest (often defined by redistricting authorities), or other ‘natural’ features such as rivers or mountain ranges. Capturing these criteria mathematically is simple: any set of census blocks can be defined as belonging to a grouping set and a penalty for splitting groups can be added to the overall rule for evaluating (scoring) a redistricting plan. (We are sympathetic to the argument put forth by Forest (Forest 2004) that using only quantitative data to represent communities of interest can result in ‘thin’ representations of community. Using the technique just described, the BARD system can incorporate information about the boundaried of communities of interest based on external qualitative analysis and “thick” descriptions.) An example of this type of community cost function is included in the BARD package. The twist is that these criteria are often secondary to equal population, contiguity, and Voting Rights concerns, and so the scores associated with each criterion needs to be properly weighted, in order to permit some violation of feature boundaries to accommodate superseding criteria.

3. Improving Algorithms for Automated Redistricting

Within the general combinatoric optimization framework are many ways to represent particular redistricting problems mathematically (see Altman 1997). However, representing redistricting as a graph partitioning problem is the most natural formulation, since it allows the expression of

\footnote{While this is a legal requirement in many states, it is not a Federal requirement. And there are documented instances of non-contiguous districts or districts of questionable contiguity because they are connected over water without a bridge (Altman 1998). For example, Wisconsin requires districts to be composed entirely of wards which are sometimes non-contiguous when odd city boundaries create islands of incorporated or unincorporated territory. The 61st Assembly district created in 2001 is non-contiguous as a result of containing such a ward on its perimeter. To avoid having non-contiguous districts, the state created a legal fiction by stating that all wards are contiguous, see Wisconsin Code 5.15(1)(b).}
geographic values, such as compactness and contiguity in a simple and direct way. Furthermore, in previous research (below), this representation seems to be the most amenable to an efficient solution. 4

To put the problem in formal terms:

1. Let \(x_i \) refer to the \(i^{th} \) census block, \(x_i \in X \) where \(X \) is the set of all census blocks in a jurisdiction. These blocks are vector-valued, and we will assume that blocks are associated to various population values, partisan registration percentages, and geographic locations, among other features. \(d_i \) refers to the \(i^{th} \) district. A district is a set of census blocks:

\[
d_i = \{x_j, x_k, \ldots, x_n\}
\]

2. \(p_i \) refers to a particular plan. A plan is a partition of the set of all census blocks \(X \) into a disjoint set of districts, such that \(X = \bigcup d_i \) and \(\emptyset = \bigcap d_i \):

\[
p_i = \{d_1, \ldots, d_n\}
\]

3. \(G = (V, E) \) is a mathematical graph representing the underlying census block geography. Each node \(v_i \) in \(g \) represents a census block, and each edge \(e_{i,j} \) denotes physical adjacency of those blocks.

Figure 1 provides a graphical illustration:

Finding an equipopulous, contiguous plan is then equivalent to the following optimization problem, known as “Cut into Connected Components of Bounded Weight”(see Altman 1997):

Is there a partition of vertices, \(V \), into disjoint sets \(V_1 \) and \(V_2 \) such that

\[
\sum_{v \in V_1} s(v) \leq K
\]

4Less commonly, set-partitioning and integer programming approaches have been used to solve the redistricting problem. These are mathematically equivalent, although incorporating contiguity requires that a large number of side constraints be enumerated in formulating each problem instance. Geographic site-selection and facility allocation problems, as found in the operations research literature, are related to the redistricting problem but no techniques are available currently to reformulate arbitrary redistricting problems in these terms. In terms of fundamental computational complexity, the particular problem representation is less important, since one could convert a redistricting problem instance back and forth among any different NP-complete problem representation in polynomial time. However, in practice, a proper choice of representation can make it much easier to formulate and solve the problem.

5A small number of jurisdictions permit overlapping “floterial” districts, which permit the assignment of census blocks to more than one district. We have not implemented a metaheuristic optimization algorithm for floterial districts.
and

\[\sum_{v \in V_2} s(v) \leq K \]

and both \(V_1 \) and \(V_2 \) induce connected subgraphs of \(G \)?

3.1. Computational Challenges

Formally, redistricting is a computationally complex optimization problem (Altman 1997). Perhaps the optimal plan could simply be selected by drawing all feasible redistricting plans. Unfortunately, for the task of redistricting a state’s congressional or state legislative districts, no algorithm is guaranteed success in a reasonable time. Consider a modest sized state such as Wisconsin, which has slightly more than 330,000 census blocks. If blocks were of equal population, then there would

![Figure 1: Illustration of redistricting as a graph problem.](image-url)
be more possible redistricting plans than there are quarks in the universe. More specifically, the
number of possible districts for a given number of blocks and districts is a Stirling Number of the
Second Kind:

\[S(n, r) = \frac{1}{r!} \sum_{i=0}^{r} \left[(-1)^{r} (r - i)^{n} \frac{r!}{(r - i)!i!} \right] \]

The staggeringly large number of plans is actually an underestimate since blocks do not have equal
population and hence each district might contain a different number of blocks. Enumeration of all
districts with 41,250 blocks would further require drawing equal population districts with 41,250 ± \(\epsilon \) blocks. In practice, contiguity will reduce the number of feasible plans that must be enumerated,
however, the number of possible plans is still likely to remain staggering. Thus, selecting the global
optimal plan from a full enumeration of all plans is not feasible even using the fastest computers
currently available.

Lacking enumeration, some sort of heuristic is needed to find an optimal redistricting plan. Perhaps
an optimal plan can be selected from a large number of random plans “sampled” from the feasible
space of redistricting plans. Unfortunately, random assignment of blocks to districts will often
violate equal population and will furthermore violate other criteria, such as contiguity. An algorithm
that simply assigns blocks randomly to districts would be enormously inefficient as it would produce
illegal plans with a high probability. As a consequence, a representative “sample” would still take
a prohibitively long time to draw.

A variant on simple random block assignment is a “greedy” heuristic that starts from a seed block
and randomly assigns additional contiguous blocks to a district until a target population value is
reached. The advantage of such heuristics is that they produce contiguous plans, and have thus been
touted as producing a random sample of feasible districting plans (e.g., Cirincione, Darling, and
O’Rourke 2000). However, as Knuth warns, just because an algorithm is stochastic and appears to
behave unpredictably does not mean that it produces a true random sample (Knuth 1997). Upon
reflection, heuristics such as these have a tendency to draw compact districts, since they grow
snake-like district boundary tendrils with low probability. Thus, greedy heuristics do not randomly
sample from the set of feasible redistricting plans and might fail to create a near-optimal plan even
if run a large number of times.

Perhaps a greedy algorithm could find an optimal redistricting plan if it selected blocks using
a greedy optimization algorithm to increase a more general objective function. Upon reflection,
this will not work either. For example, imagine a state must draw a district with more than a
majority percentage of minorities (so called “minority-majority” districts) to be in compliance with
Better Automated Redistricting

the Voting Rights Act. Imagine that there are two sizable minority communities in a state separated by a white suburb. The only feasible minority-majority district is one that links the communities by a narrow bridge across the suburb. A greedy algorithm aimed towards maximizing district minority population might easily miss this arrangement because it would reject drawing the bridge.

Furthermore, districts cannot be drawn in isolation from one another. For example, suppose that two minority-majority districts were needed to be in compliance with the Voting Rights Act and the optimal plan was one that divided the larger of two minority communities. A greedy algorithm might again fail because it would not orient the first district in such a manner as to permit the creation of the second minority-majority districts (e.g., the first district is composed entirely of the core of the minority community).

As might be expected from the theoretical computational complexity of the problems, exact (optimal) methods have been unsuccessful in yielding solutions to problems of significant size. The most successful of the exact solution methods, based on integer-programming formulations, have advanced considerably over the last decade, but are still limited to relatively small problems: In a recent study a redistricting problem on a 30x30 grid was solved (Aerts, Eisinger, Heuvelink, and Stewart 2003) for a fixed set of redistricting criteria, and the authors speculated that such methods could be extended up to a 50x50 grid.

Exact solution methods are difficult or impossible to extend to arbitrary redistricting criteria. Even integer programming, which is one of the most (if not the most) general formulations for which exact solution methods are used, requires extensive expertise to reformulate redistricting criteria as integer partition constraints. In contrast, success using evolutionary algorithms on artificial grid data of up to 500x500 has been reported for a related site-search allocation problem (Xiao 2006).

3.2. Available Working Software

Despite the long history of experiments in automated redistricting, there are few tools publicly available for automated redistricting. To our knowledge, five commercial software tools produced by Caliper Corporation, ESRI, Digital Engineering Corporation (which provides a redistricting add-on for ESRI’s GIS program), Corona Solutions, and Manifold Systems provide automated redistricting functionality (Altman, MacDonald, and McDonald 2005).

All of the publicly available tools are limited in several regards. First, they are capable only of producing districts with equal population and have no means to accommodate other criteria neces-

6In addition to these companies, the Texas Legislative Council developed prior to the 2001 round of redistricting a promising in-house automated redistricting program known as TARGET with limited exploratory capabilities.
sary to produce legal plans. All but one program uses variations on steepest ascent heuristics, the exception is Corona Solutions which claims to use a single-criterion genetic algorithm. Unfortunately, we do not know much about the internal workings of these programs since they are closed source and their algorithmic details poorly documented (which raises transparency issues similar to the controversies surrounding electronic voting machines). As the basic redistricting GIS programs typically cost several thousand dollars (Manifold being the single notable exception), many public interest groups are priced out of redistricting.

In our testing of these programs, we found that they could generate plans automatically, but that these would not be considered legal plans. For example, ESRI’s automated redistricting algorithm stops growing districts when the growing circular districts touch, yielding polka-dot districts that leave much of a state unassigned to any district. Manifold’s algorithm apparently grows districts around single seed blocks, sometimes producing a single-block district when other districts are first grown around it. We do not necessarily fault these companies for their rudimentary algorithms. There is little market demand for automated functionality as well-funded redistricting authorities and consultants are reticent to hand over highly sensitive political decisions to a machine.

Furthermore, most experimental work, because it focuses on eliminating politics from redistricting (which we believe to be quixotic) implements heuristics designed to satisfy compactness, contiguity, and equal population (and much of it often takes an ad-hoc view of compactness). To our knowledge none looked at either maximizing partisan advantage nor competitiveness—which makes it impossible to use commercial software to examine the trade-offs among these potential goals.

3.3. New Computational Approaches

A more general optimization heuristic is needed. In order to be adaptable to any reasonable redistricting goal, a successful approach should consider not only additions of single blocks to a district core, but arbitrary exchanges of multiple blocks among districts. To avoid being trapped in local optima, such a heuristic must be permitted to make some backwards (non-improving) steps in search of the global optimum, such as bridging two minority communities through a white community. These features of the redistricting problem suggest that metaheuristics may be an effective practical solution.

Over the last two and a half decades, a set of new and surprisingly effective heuristic approaches to large optimization problems have arisen, including simulated annealing, evolutionary optimization (including genetic algorithms), iterated local search (including greedy randomized adaptive search), ant colony optimization, and tabu search. These approaches, although formulated independently,
have now been recognized as belonging to a more general *metaheuristic* framework.

Essentially, metaheuristics are a general approach to optimization that involves combining a set of basic heuristics that find optima only in a local neighborhood with a larger framework for guiding and applying these heuristics repeatedly in a large search space (See (Blum and Roli 2003), for an in-depth survey of metaheuristics, and see (Altman 1997; di Cortona, Manzi, Pennisi, Ricca, and Simeone 1999; Xiao 2003, and the citations therein) for surveys of other optimization algorithms used to solve the redistricting problem). Designing and applying metaheuristics requires dynamically balancing between *diversification* and *intensification*. Diversification involves generating new candidate solutions in such a way as to thoroughly explore the solution space. Intensification involves using (implicitly or explicitly) the history of candidate solutions that have been previously evaluated to guide the direction of iterative search. Diversification is needed to have a high probability of finding the region of solutions that contains an optimal solution and intensification is needed to find these solutions in a practical amount of time.

Heuristics that are now recognized as being forms of metaheuristic include the aforementioned simulated annealing, genetic algorithms, tabu search, and ant colony optimization heuristics, as well as many more. All have many variants and parameterizations, and none work well for all optimization problems (Wolpert and Macready 1997). Finding the right solution approach for a particular domain of problems is a matter of craft as much as science.

Although no single metaheuristic is guaranteed to be ideal, there are many reasons why the metaheuristic framework is an appropriate one to use for approaching redistricting:

1. First, metaheuristics have a track record of being successful on difficult combinatoric optimization problems. Redistricting is an exemplar of such a problem – no sure solutions are available and no sure solutions are likely to be discovered due to the problem’s computational complexity.

2. Second, in experimental work the heuristics that have been most successful for redistricting-like partitioning problems are forms of metaheuristics.

3. Third, metaheuristics do not assume *a-priori* a set of particular redistricting goals, or operationalization of them (Although it is still likely that a particular configuration of selected metaheuristic is better at optimizing on one type of goal, such as compactness, than another, such as competitiveness). By using a general metaheuristic framework we can allow the redistricting plan’s author the flexibility to specify goals to be satisfied, rather than hard-coding the goals into the the solution method.
4. Fourth, by using multiple metaheuristics to “solve” the same problem, we reduce the threat that a particular heuristics can systematically interact with a redistricting goal (See Altman 1998) to bias the resulting plan.

Of course, we do not know what the world will be like when fully functional automated redistricting software capable of producing legal maps are available. Our goal is to produce such software and make it open source and freely available. We envision public interest groups would be enabled to draw and actively lobby for their maps; courts would no longer necessarily need to adjudicate only between maps offered to them by the political parties during litigation; academic scholars (and expert witnesses) could use the program to explore hypothetical scenarios to test the motivations and outcomes of redistricting; and perhaps even politicians would be interested in the software as means to remove politics from the process.

The challenge is to develop software that can simultaneously optimize multiple criteria and produce legal maps. Such software must also be flexible enough to satisfy differing criteria among the several states. Ideally, the software would permit weighting of the criteria in the objective function. To make the program politically feasible, it must also be capable of avoiding “second-order bias” (Parker 1990), that is, cleverly selecting criteria to produce a favorable political outcome. Thus, it must also be capable of analyzing (and even incorporating into the criteria being optimized) political characteristics.

4. BARD’s Modular Approach to redistricting

The BARD system is divided into separate independent modules in order to facilitate maintenance and flexibility. Separate modules handle file input/output, visualization of plans, computing each family of related scores, and each family of optimization heuristics.

Our approach divides the redistricting process into four independent phases.

The first phase comprises all initialization and configuration. The user selects the geography to load along with any demographic and political variables and selects the set of metaheuristics to apply. The user also configures the formula used to evaluate the plan. Typically, this formula is a weighted combination of equal population, target racial population, compactness, geographic constraints, and election data for predictive election outcomes. We supply these and many other “building block” scores in BARD and users can write their own scores as well, using any function supplied in R and any combination of demographic or geographic variables they supply with their maps.
Better Automated Redistricting

The second phase comprises the generation of *starting points* for redistricting plans. The user may choose to start from pre-existing plans (e.g. chosen by the legislature, or offered by a public interest group) if available, or to have BARD generate arbitrary plans using random assignments, random walks, or other stochastic procedures.

The third phase, applies the metaheuristics and cost function configured in phase one to the starting points generated in phase two. This involves significant computation and should yield a plan that is (at least) a local optimum for the given scoring formula.

The second and third phases are repeated, possibly while varying the weighting of components of the score formula, to generate a set of plans. The resulting plans vary over the values of the individual score components and overall score (either due to the systematic reweighting of score components, or due to the variance among starting points).

In phase four, the set of candidate plans is analyzed. BARD outputs the range of overall scores, the range of scores for each component, the differences among plans, and the correlations among score components. Candidate plans may also be contrasted with the starting plans if meaningful pre-existing starting points were selected. This analysis phase can thus reveal the trade-offs among redistricting criteria between a starting map and an optimized map.

4.1. Optimization Details

The initial version of BARD includes both *simulated annealing* and *genetic algorithms* as optimization metaheuristics. As (Altman, Gill, and McDonald 2003, chapter 4) explains:

Simulated Annealing (SA) exploits an analogy between the way in which molten metal freezes into a minimum energy crystalline structure (the annealing process) and the search for a function optimum. At each iteration, simulated annealing randomly generates a candidate point (or set of points) within a local neighborhood of the current solution. The probability of moving from the current solution to one of the candidate points is a function of both the difference in the value of the objective function at each point, and a temperature parameter. At high temperatures, candidate points that are “worse” than the current solution can be selected as the solution in the next iterate. This helps the heuristic to avoid a local optimum. At each iteration, the temperature is reduced gradually, so that the probability of heading downhill becomes vanishingly small.

Genetic Algorithms (GA) are a form of heuristic inspired by analogies between optimization (and adaptation) and the evolution of competing genes. In a genetic algorithm, a population set of candidate solutions are supplied to the optimization problem. Each solution is encoded as a string of values. At each iteration each member of the population is subject, at random, to mutation
(an alteration of the solution vector), hybridization (a reshuffling of subsequences between two solutions). In addition, each round undergoes selection, where some solutions are discarded, and some are duplicated within the population, depending on the fitness (function evaluation) of that member.

Solving difficult optimization problems, however, is as much an art as a science. BARD incorporates many optimizations such as dynamically updating scores based only on the parts of districts that changed, and use of optimized “C” code to supplement the main R framework.

Optimization algorithm performance can be quite sensitive to starting values when a function has multiple local optima. The redistricting problem is rife with local optima. In practice, optimization algorithms can frequently become trapped in a local optima. This is true even for metaheuristics, unless the metaheuristic can adapt (or is adapted by the researcher to) the particular problem.

Part of the difficulty lies in trying to optimize on multiple constraints, for example the case of equal population and contiguity. A solution that scores well on equal population may have difficulty improving to create a map with contiguous districts. Or, a map that is contiguous may have difficulty improving to create a map that has more equal population among districts.

Another part of the difficulty has to do with the size of the local neighborhood being searched at each iteration. Sometimes an algorithm must take large steps to escape the basin of attraction that leads back to a local optima. For example, a simulated annealing algorithm that considered only a single trade of census blocks among districts at each iteration may become trapped in a local optima more easily than one that considers trades of two or more blocks at a time.

Selecting good starting values makes it much easier for metaheuristics to yield improved plans. In practice, when one starts with a current legal plan, it is much faster to generate a new, better-scoring plan than when starting from an entirely random district. The problem with using the former districts as a starting point is that political motivations that predominate the district shapes will continue to influence the solution. In some cases, we would like to entertain solutions that are potentially far from the former districts.

We have implemented three types of algorithms to produce district starting seeds. The first is a simple random assignment of geography to districts, which we implement to create districts that are near to equal population but have a small probability of being contiguous. Another algorithm, which we call \(k \)-means, creates \(n \) districts from a \(n \)-number of random seeds by assigning all bits of geography based on the closest seed centroid to the geography’s centroid. \(K \)-means tends to produce nearly-contiguous (and relatively compact) districts that are of unequal population. A third algorithm is a greedy algorithm that grows districts from seed values and builds districts by
Better Automated Redistricting

assigning geography that best improve on the score function. The greedy algorithm can produce contiguous equal population districts, but tends to draw elongated districts, can get stuck, and is computationally intensive.

We have experimented most with optimization using districts generated by random assignment and \(k \)-means. We have found these starting maps tend to be extremes on the two dimensions, scoring well on equal population or contiguity, but not both. Our optimization algorithm evaluates trades of a single geography between districts. As such, we find that the optimization algorithm has difficulty displacing itself from the local optima to one that scores well on both equal population and contiguity.

A solution we are exploring is to dynamically aggregate selected blocks to speed computations. We are experimenting with two solutions, one considers trades of aggregate geography, such as counties rather than census blocks. The other considers a trade of a random point and all geography in the closest path from the point to the candidate district. These solutions are promising, but as to date have yet to solve our problems. The aggregate geography approach has led us to re-evaluate implementation of the greedy starting-seed algorithm, as it may be possible to develop a less-computationally intensive greedy algorithm that is at the same time “smart” in that it uses the \(k \)-means algorithm to draw relatively compact districts.

5. Plan evaluation and exploration

A unique aspect of BARD’s approach is that it enables one to explore the tradeoffs between redistricting goals, such as the de-minimis population inequality effect and district compactness, the creation of an additional majority-minority district and the number of partisan seats, and district competitiveness and compactness. We can repeatedly generate plans using the same set of redistricting goals, while systematically changing the weight given to one (or two) of those goals, and then examine systematic trends in plan scores in one more dimensions. For example, if plans that are generated using a scoring rule that weights compactness heavily have significantly fewer minority districts than plans generated with a lower weight on compactness, this suggests a tradeoff exists between compactness and minority representation.

A variant of this technique can also be applied to reveal the preferences of those who created a districting plan. Informally, if we start with a redistricting plan chosen by a set of participants and show that a small modification to this plan has a large impact on a particular goal, we can infer that the author of the plan places a low value on that goal. For example, if one can make plan more competitive, at the expense of a small degree of compactness, while keeping the plan the
same in all other relevant ways, then we have reason to believe that the author of the plan valued compactness over competitiveness.

Courts and litigants have used this approach informally, especially in the absence of smoking gun evidence, when they examine characteristics of plans that were rejected to illuminate why a particular plan was accepted. For example, it has been used by academics to assess intent in North Carolina’s redistricting in the 1990s (Gronke and Wilson 1999). Using automated redistricting it is possible to systematize this method – BARD facilitates this.

Formally, this technique based on a fundamental axiom in economics, the Weak Axiom of Revealed Preference (WARP) (Samuelson 1948). Any method to infer preferences from the actions of a rational actor must rest on WARP. WARP states that if one observes a choice

\[\{a\} \]

from a set

\[\{a, b, c\} \]

then it must be the case that

\[a \geq b, a \geq c \]

To illustrate with a simple example, WARP implies that if I like chocolate ice cream over vanilla and strawberry, I will choose chocolate when presented with either a choice between chocolate and vanilla or chocolate and strawberry.

In a redistricting context, if plans \(a \) and \(b \) are available, but plan \(a \) is chosen, then it must be that plan \(a \) is weakly preferred. Using this method to reject competing hypotheses does not require the distributional assumptions that limit sampling heuristics. WARP is deterministic: the probability that \(b > a \) when \(a \) is chosen, equals zero.\(^7\)

We can use computationally intensive district generation techniques to reveal intent using WARP. The optimization algorithm can map out the space of local optimum of a value function that captures all relevant redistricting goals. For example, if there exists a plan that contains one more minority district than an adopted map, and there is no difference in terms of other geographic and political goals, then maximization of minority districts was not a goal of a redistricting authority.

A limitation of this approach is that a redistricting authority must be reasonably aware of the existence of an alternative map. In some states, maps revealed through public submission phases

\(^7\) Any method for inferring intent must assume some weak collective rationality – that what is intended is also what is chosen. If this assumption is violated, and the preferred plan is not the one chosen (at least probabilistically), then any attempt to infer intent is futile.
Better Automated Redistricting

of a redistricting process can help chart a redistricting authority’s preference structure. Where public submissions are not permitted, optimization from the starting seed of the adopted map may reveal if there was an easily discoverable district configuration that would have improved a map on a given criterion under study.

There are three further limitations to this approach. First, the choice of K, I, and R should represent plausible explanations of the goals of the redistricting process in the political context being analyzed: Like any other statistical test, a set of reasonable causal hypotheses must be a starting point. Second, like any other analytic method, its effectiveness will depend on how informative the data is. In some cases it may fail to reject any of the competing hypotheses, and one may need to obtain more data, such as other plans that were under consideration. Finally, to be interpreted as revealing preference rather than simply opportunity plans used for comparison must have been reasonably discoverable by a redistricting authority. However, since this method uses real plans as a starting point, our method requires only that a districting authority be aware only of plans that were directly related to proposed plans, while most statistical methods of analyzing plan choice assume that the districting authority was aware of, and had a choice over, of the entire distribution of plans.

6. How to use BARD

This brief example shows how BARD can be used:

```r
> packageDescription("BARD")

> brown.map <- bardImportShape(system.file("shapefiles/Brown_block.shp",
+     package = "BARD"), galfile = system.file("shapefiles/Brown_block.GAL",
+     package = "BARD"))
> ndists <- 5
> kplan1 <- kmeansPlan(brown.map, ndists)
> kplan2 <- kmeansPlan(brown.map, ndists)
> rplan <- randomPlan(brown.map, ndists)
> cplan <- CDOcontiguityPlan(brown.map, ndists, usebb = TRUE)
> op <- par(ask = TRUE)
> plotPlan(kplan1, brown.map)
```
> plotPlan(kplan2, brown.map)
> plotPlan(rplan, brown.map)
> par(op)

This is a comparison of the starting plans:

> comparePlans(list(kplan1, kplan2, rplan), brown.map, scores = list(Pop1 = score1, + Pop2 = score2))

This shows the cost function configuration, and optimization phase:

> funcs <- c(pop.bw, pop.mean.var)
> b.vars <- c("POP", "POP")
> var.weight <- c(1, 1)
> optim.env = new.env()
> scoreGenerator <- costWrapper(func.family = funcs, block.vars = b.vars, + dataframe = brown.map$shape$att.data, baseMap = brown.map, + ndists = 5, weight = var.weight)
> score1 <- function(plan, basemap) {
+ scoreGenerator(plan, resetScore = TRUE)
+ return(pop.bw(dataframe = brown.map$shape$att.data, baseMap = basemap, + ndists = 5))
+ }
> score2 <- function(plan, basemap) {
+ scoreGenerator(plan, resetScore = TRUE)
+ return(pop.mean.var(dataframe = brown.map$shape$att.data, + baseMap = basemap, ndists = 5))
+ }

> funcs <- c(pop.mean.var, pop.bw, pop.max.dev, compact.REOCK, + scoreContiguity)
> b.vars <- c("POP", "POP", "POP", "NULL", "NULL")
> var.weight <- c(2, 2, 1, 1, 2)
> optim.env = new.env()
> mymap <- function(plan, ...) {
+ plotPlan(plan, brown.map$polys, ndists, ...)}
Better Automated Redistricting

```r
+ }
> myscoreO <- costWrapper(func.family = funcs, block.vars = b.vars,
+     dataframe = brown.map$shape$att.data, baseMap = brown.map,
+     ndists = 5, weight = var.weight)
> gp2 <- optimGenWrapper(genPlanR, basemap = brown.map, onewayprob = 0.2,
+     plotf = NULL, DEBUG = TRUE)
> system.time(
+     plan1a <- optim(round(kplan1), myscoreO, gr = gp2, method = "SANN",
+         control = c(maxit = 1000, temp = 10, tmax = 1))
+ )
> myscoreO(plan1a$par)
> mymap(plan1a$par)
```

7. Summary

BARD is still in early release. However, even in its current state, it is the only open-source redistricting system available. Moreover, BARD is the only publicly available (commercial or non-commercial) software that does multi-criteria optimization, allowing the user to specify a formula that includes more than one variable. Finally, BARD is unique in providing a framework for the systematic analysis of tradeoffs in redistricting.

Our package can be obtained from the project website bard.sf.net, any CRAN mirror (http://cran.r-project.org/).

8. Acknowledgements

We thank Max Tsvetovat and Mike Margolis for their comments and recommendations, and Mark Rouleau for research assistance and programming. Turning to institutional sponsors, we thank the Joyce foundation for its support, without which this research would have been impeded.

9. References

References

Affiliation:
Micah Altman
Senior Research Scientist
Institute for Quantitative Social Science
Harvard University
1737 Cambridge Street, Room 325
Cambridge, MA, 02138.
United States of America
E-mail: micah_altman@harvard.edu
URL: http://www.hmdc.harvard.edu/micah_altman/

Michael P. McDonald
Associate Professor, Department of Public and International Affairs
George Mason University
4400 University Drive - 3F4
Fairfax, VA 22030-4444
E-mail: mmcdon@gmu.edu
URL: http://elections.gmu.edu/