The orientlib Package

February 3, 2006

Title Support for orientation data
Version 0.8.3
Author Duncan Murdoch
Description Representations, conversions and display of orientation SO(3) data. See the orientlib help topic for details.
Maintainer Duncan Murdoch <dmurdoch@pair.com>
License GPL
Depends R (>= 2.2.0), methods, scatterplot3d
LazyLoad yes
SystemRequirements Will use djmrgl or rgl packages for rendering if present
URL http://www.stats.uwo.ca/faculty/murdoch/software

R topics documented:

boat3d ... 2
coerce-methods .. 3
eulerzxz ... 3
eulerzyx ... 4
index-methods ... 5
length-methods .. 5
matrix-classes .. 6
matrix-methods .. 6
mean-methods .. 7
nearest .. 7
orientation-class .. 8
orientlib ... 9
orientlm ... 10
quaternion .. 11
rotation.distance .. 12
rotmatrix .. 13
rotvector ... 14
skewmatrix ... 15
skewvector .. 16
vector-classes ... 17
weighted.mean-methods ... 18
Index

boat3d

boat3d

Draw boat glyphs for orientation data

Description

Draws a stylized sailboat to represent an orientation.

Usage

```r
boat3d(orientation, x = 1:length(orientation), y = 0,
      z = 0, scale = 0.25, col = 'red', add = FALSE, box = FALSE, axes = TRUE,
      graphics = c('djmrqgl', 'rgl', 'scatterplot3d'), ...)
```

Arguments

- `orientation`: An orientation object to be shown.
- `x`, `y`, `z`: Coordinates where boats should be shown.
- `scale`: Size of boats
- `col`: Colour of boats
- `add`: Context in which to continue drawing, or FALSE to clear first.
- `box`: Whether to draw a box around the plot
- `axes`: Whether to draw axes
- `graphics`: Which graphics package to use
- `...`: Additional graphics parameters; see Details below

Details

For the identity orientation, the sailboats will be shown upright. Other orientations are shown as rotations of this glyph.

The (x,y,z) coordinate appears in the middle of the sail, at the top of the gunwales of the boat.

If either the `djmrqgl` or `rgl` package is installed, it will be used to draw solid faces on the boats which can be moved by the user. If not, but the `scatterplot3d` package is installed, it will be used to draw fixed wireframe boats. This search order can be changed by modifying the `graphics` parameter.

Additional graphics parameters may be passed. If `djmrqgl` graphics is used, then these are passed to `par3d` before the plotting is done; if `scatterplot3d` is used, these are passed to the `scatterplot3d` function (and ignored when adding to an existing plot). Extra parameters are not passed to `rgl`.

To add to a `scatterplot3d` plot, you must pass the return value from the initial plot as the value of `add`. See the `orientlm` function for an example.

Value

A `djmrqgl` handle for the graphics display, a current plot number for `rgl`, or a `scatterplot3d` drawing context. In any case, an attribute named `graphics` is added to indicate the drawing device type.
Note

Requires the `djmrgl`, `rgl` or `scatterplot3d` package.

Author(s)

Duncan Murdoch

Examples

```r
x <- eulerzyx(psi=c(0,pi/4,0,0), theta=c(0,0,pi/4,0), phi=c(0,0,pi/4))

# Need a 3D renderer; assume scatterplot3d, but others could be used
s <- boat3d(x, 0:3, axes = FALSE, graphics = 'scatterplot3d')
text(s$xyz.convert(0:3, rep(-0.5,4), rep(-0.5,4)),
     label = c('Id','z','y','x'))

## Not run:
# if the djmrgl package is loaded, this code will work
boat3d(x, 0:3, axes = FALSE)
axis3d('yz',at=0:3,labels=c('Id','z','y','x'))
# if the rgl package is loaded, this code will work
boat3d(x, 0:3, axes = FALSE, graphics = 'rgl')
rgl.bbox(xat=0:3,xlab=c('Id','z','y','x'),yat=1,zat=1,color='grey')
## End(Not run)
```
Arguments

phi Rotation about Z axis
theta Rotation about X axis
psi Further rotation about Z axis

Details

The rotations are expressed in radians and applied in the order Z, X, Z.
If theta and psi are missing, phi is taken to be an n x 3 matrix (or 3 element vector) holding all 3 Euler angles; alternatively, it may be an orientation object.

Value

An eulerzxz-class object.

Author(s)

Duncan Murdoch

See Also

eulerzxz-class, eulerzyx-class, rotmatrix, rotvector, quaternion, skewvector, skewmatrix

Examples

x <- eulerzxz(c(1,0,0), c(0,1,0), c(0,0,1))
x
rotmatrix(x)
Details

The rotations are expressed in radians and applied in the order Z, Y, X.
If theta and phi are missing, psi is taken to be an n x 3 matrix (or 3 element vector) holding all 3 Euler angles; alternatively, any orientation object may be used.

Value

An eulerzyx-class object.

Author(s)

Duncan Murdoch

See Also

eulerzyx-class, rotmatrix, rotvector, quaternion, skewvector, skewmatrix

Examples

```r
x <- eulerzyx(c(1,0,0), c(0,1,0), c(0,0,1))
x
rotmatrix(x)
```

Description

Methods are defined for indexing all types of orientations.

Details

Single bracket indexing (e.g. `x[1:3]`) creates a new orientation object of the same class as the original by selecting the appropriate entries. Double bracket indexing (e.g. `x[[3]]`) extracts the chosen data as a matrix or vector, depending on the class of the orientation.

Description

The generic `length()` function has methods for orientations; it counts the number of orientations in the object.
Description
An orientation represented by 3 x 3 SO(3) matrices or 3 x 3 skew symmetric matrices

Objects from the Class
Objects can be created by calls of the form \texttt{rotmatrix}(x) or \texttt{skewmatrix}(x). The objects store the matrices in a 3 x 3 x n array.

Slots
\textbf{x}: 3 x 3 x n array holding the matrices.

Extends
Class "orientation", directly. Class "vector", by class "orientation".

Methods
\texttt{[[,}, \texttt{[<-,} Extract or assign to subvector
\texttt{[[,}, \texttt{[<-,} Extract or assign to an entry
\texttt{length} The length of the orientation vector
\texttt{coerce} Coerce methods are defined to convert all orientation descendants from one to another, and to coerce an appropriately shaped matrix or array to a rotmatrix

Author(s)
Duncan Murdoch

See Also
\texttt{orientation-class, vector-classes, rotmatrix, skewmatrix}

Examples
\begin{verbatim}
x <- rotmatrix(matrix(c(1,0,0, 0,1,0, 0,0,1), 3, 3))
x
skewmatrix(x)
\end{verbatim}

Description
Methods are defined for matrix multiplication \%*\% transposition \texttt{t()}, and real powers ^. These operate on the orientations term by term.
mean-methods

Description

The mean function.

Methods

- `x = "ANY"` the standard mean function
- `x = "orientation"` find the nearest SO(3) matrix to the mean `rotmatrix-class` representation of the orientations

nearest

Find nearest SO(3) or orthogonal matrix.

Description

Converts arbitrary 3 x 3 matrices into the nearest SO(3) or orthogonal matrix.

Usage

```r
nearest.SO3(x)
```

```r
nearest.orthog(x)
```

Arguments

- `x` 3 x 3 matrices stored in a 3 x 3 x n array

Details

Uses Stephens’ (1979) algorithm to find the nearest (in entry-wise Euclidean sense) SO(3) or orthogonal matrix to a given matrix.

Value

- `nearest.SO3` produces an `orientation-class` object holding the closest orientations.
- `nearest.orthog` produces a 3 x 3 x n array of orthogonal matrices.

Author(s)

Duncan Murdoch

References

See Also

`orientation-class`
Examples

```r
x <- matrix(rnorm(9), 3,3)
nearest.orthog(x)
nearest.SO3(x)
x <- -x
nearest.orthog(x)
nearest.SO3(x)
```

orientation-class
Class "orientation"

Description

Abstract class for vectors of various representations of SO(3) (orientation) objects.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

- `coerce` Methods are defined to coerce `orientation` objects to any concrete descendant class.
- `%*%` Matrix multiplication acts on `orientation` objects component by component, producing compositions of the rotations.
- `^` An orientation is raised to a power by multiplying its component rotation angles by that power.
- `t` The transpose of an `orientation` object is its component by component inverse.
- `mean` The mean of an `orientation` object is the nearest SO(3) matrix to the element-by-element mean of its 3 x 3 rotation matrix representation.
- `weighted.mean` The weighted mean, defined analogously to the `mean`.

Author(s)

Duncan Murdoch

See Also

- `matrix-classes`, `vector-classes`

Examples

```r
x <- rotmatrix(diag(3))
x
rotvector(x)
eulerzyx(x)
eulerzxz(x)
quaternion(x)
```
Description

Representations, conversions and display of orientation data.

Details

This package contains methods for working with orientation data, i.e. data from SO(3). The basic abstract class is the `orientation`; there are several concrete classes (`rotmatrix`, `rotvector`, `eulerzyx`, `eulerzxz`, `quaternion`, `skewmatrix` and `skewvector`) storing different representations of orientations.

Methods are defined to get the length of a vector of orientations, as well as to extract and replace elements, and to multiply orientations and raise them to real powers.

There are also utility functions `rotation.distance`, `rotation.angle`, `nearest.orthog`, `nearest.SO3`.

There is a plotting method `boat3d` to display orientation data in a 3D plot, and a linear modelling function `orientlm`.

Release History

<table>
<thead>
<tr>
<th>Versions 0.3, 0.4, 0.5</th>
<th>- Changes for CRAN compliance.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version 0.2</td>
<td>- Added <code>mean</code> and <code>weighted.mean</code>.</td>
</tr>
<tr>
<td></td>
<td>- Made <code>orientation</code> descend from <code>vector</code>.</td>
</tr>
<tr>
<td></td>
<td>- Added <code>[]</code> methods.</td>
</tr>
<tr>
<td></td>
<td>- Changed default look of boats.</td>
</tr>
<tr>
<td></td>
<td>- Made <code>rotmatrix</code> etc. into conversion functions between orientation types.</td>
</tr>
<tr>
<td></td>
<td>- Added <code>eulerzxz</code> class.</td>
</tr>
<tr>
<td></td>
<td>- Added various parameters to <code>boat3d</code>.</td>
</tr>
<tr>
<td></td>
<td>- Added <code>orientlm</code> regression function plus transpose <code>t()</code> method.</td>
</tr>
<tr>
<td></td>
<td>- Added <code>rgl</code> and <code>scatterplot3d</code> support to <code>boat3d</code> function.</td>
</tr>
<tr>
<td></td>
<td>- Added <code>skewmatrix</code>.</td>
</tr>
</tbody>
</table>

Version 0.1 - First release.

Note

Plots require one of the `djmrgl`, `rgl`, or `scatterplot3d` libraries.

Author(s)

Duncan Murdoch
Linear models for orientation data

Description

Regression models for matched pairs of orientations.

Usage

orientlm(observed, leftformula, trueorient = rotmatrix(diag(3)),
rightformula, data = list(), subset, weights, na.action,
iterations = 5)

Arguments

observed Observed orientations
leftformula Formula for “left” model (see below)
trueorient “True” orientation (see below)
rightformula Formula for “right” model (see below)
data Optional data frame for predictors in linear model
subset Optional logical vector indicating subset of data
weights Optional weights
na.action Optional NA function for predictors
iterations How many iterations to use. Ignored unless both leftformula and rightformula
are specified.

Details

The Prentice (1989) model for matched pairs of orientations was

\[E(V_i) = kA_1^TU_iA_2 \]

where \(V_i \) is the observed orientation, \(A_1 \) and \(A_2 \) are orientation matrices, and \(U_i \) is the “true” orientation, and \(k \) is a constant. It was assumed that errors were symmetrically distributed about the identity matrix.

This function generalizes this model, allowing \(A_1 \) and \(A_2 \) to depend on regressor variables through leftformula and rightformula respectively. These formulas should include the predictor variables (right hand side) only, e.g. use ~ x + y + z rather than response ~ x + y + z. Specify the response using the observed argument. If both formulas are ~ 1, i.e. intercepts only, then Prentice’s original model is recovered. More general models are fit by coordinatewise linear regression in the rotmatrix representation of the orientation, with fitted values projected onto SO(3) using the nearest.SO3 function.

When both left and right models are given, Prentice’s iterative approach is used with a fixed number of iterations. Note that Shin (1999) found that Prentice’s scheme sometimes fails to find the global minimum; this function presumably suffers from the same failing.
Value

Returns a list containing the following components:

- **leftfit**: Result of `lm` call based on `leftformula`
- **rightfit**: Result of `lm` call based on `rightformula`
- **A1**: Fitted values of A_1 for each observation
- **A2**: Fitted values of A_2 for each observation
- **predict**: Fitted values of $A_1^t U_i A_2$ for each observation

Author(s)

Duncan Murdoch

References

Examples

```r
x <- rep(1:10,10)
y <- rep(1:10,each=10)
A1 <- skewvector(cbind(x/10,y/10,rep(0,100)))
A2 <- skewvector(c(1,1,1))
trueorientation <- skewvector(matrix(rnorm(300),100))
noise <- skewvector(matrix(rnorm(300)/10,100))
obs <- t(A1) %*% trueorientation %*% A2 %*% noise
fit <- orientlm(obs, ~ x + y, trueorientation, ~ 1)
context <- boat3d(A1, x, z=y, col = 'green', graphics='scatterplot3d')
boat3d(fit$A1, x, z=y, add=context)
```

quaternion

Create an orientation using quaternions

Description

Creates a quaternion-class object.

Usage

`quaternion(m)`

Arguments

- **m**: n x 4 matrix or 4 element vector containing a unit quaternion, or an orientation object
Details

The rows of \(m \) are 4 element unit vectors interpreted as follows: the first 3 \((x, y, z)\) define the axis of rotation, and the last element gives the cosine of half the angle of rotation in a counter-clockwise direction when looking down the axis towards the origin.

Value

A `quaternion-class` object.

Author(s)

Duncan Murdoch

See Also

`quaternion-class`, `rotmatrix`, `rotvector`, `eulerzyx`, `eulerzxz`, `skewvector`, `skewmatrix`

Examples

```r
x <- quaternion(c(1, 0, 0, 0))
x
rotmatrix(x)
```

rotation.distance *Rotation angle or distance*

Description

Calculates the angle (in radians) of the rotation taking one orientation to another.

Usage

```r
rotation.angle(x)
rotation.distance(x, y)
```

Arguments

\(x, y \)
Two orientation objects

Details

If \(y \) is missing in a call to `rotation.distance`, it is treated as the identity, i.e. `rotation.angle(x)` is calculated.

Value

`rotation.distance` returns a vector of length \(\max(\text{length}(x), \text{length}(y)) \) containing the angle of the rotation taking corresponding elements of \(x \) to \(y \) (with the usual recycling rules if they are different lengths).

`rotation.angle` is equivalent to calculating the `rotation.distance` to the identity matrix.
rotmatrix

Author(s)
Duncan Murdoch

See Also
orientation-class, rotation.angle

Examples

rotation.angle(eulerzyx(1,0,0))
rotation.distance(eulerzyx(1,0,0), eulerzyx(0,1,0))

rotmatrix

Create an orientation using Euler angles

Description
Creates a rotmatrix-class object.

Usage
rotmatrix(a)

Arguments

a A 3 x 3 matrix or 3 x 3 x n array of matrices or an orientation object.

Value
A rotmatrix-class object.

Author(s)
Duncan Murdoch

See Also
rotmatrix-class, rotvector, eulerzyx, eulerzxz, quaternion, skewvector, skewmatrix

Examples

x <- rotmatrix(matrix(c(1,0,0, 0,1,0, 0,0,1), 3, 3))
x
Description

Creates a rotvector-class object.

Usage

rotvector(m)

Arguments

m n x 9 matrix or 9 element vector whose rows are vectorized 3x3 matrices, or an orientation object.

Details

Converts a matrix whose rows are vectorized 3x3 matrices (in column-major form) into an rotvector-class object.

Value

A rotvector-class object.

Author(s)

Duncan Murdoch

See Also

rotvector-class, rotmatrix, eulerzyx, eulerzxz, quaternion, skewvector, skewmatrix

Examples

x <- rotvector(c(0,1,0,-1,0,0,0,0,1))
x
rotmatrix(x)
skewmatrix

Create an orientation using the entries in a skew-symmetric matrix representation

Description

Creates a **skewmatrix-class** object.

Usage

```r
skewmatrix(a)
```

Arguments

- `a` 3 x 3 x n array or 3 x 3 matrix containing the entries of a skew-symmetric matrix, or an orientation object.

Details

The entries `a[,,i]` are 3 x 3 skew-symmetric matrices. The matrix exponential of these give SO(3) matrices.

Value

A **skewmatrix-class** object.

Author(s)

Duncan Murdoch

See Also

- **skewvector-class**, **skewvector**, **rotmatrix**, **rotvector**, **eulerzyx**, **eulerzxz**, **quaternion**

Examples

```r
x <- skewmatrix(matrix(c(0,1,2,-1,0,3,-2,-3,0),3,3))
x
rotmatrix(x)
skewvector(x)
rotation.angle(x)
```
Create an orientation using the entries in a skew-symmetric matrix representation

Description

Creates a `skewvector-class` object.

Usage

```r
skewvector(m)
```

Arguments

- `m`
 n x 3 matrix or 3 element vector containing the entries of a skew-symmetric matrix, or an orientation object.

Details

The rows of `m` are 3 element vectors (x,y,z) interpreted as follows: the matrix exponential of the matrix `((0, -z, y), (z, 0, -x), (-y, x, 0))` is the SO(3) matrix.

Value

A `skewvector-class` object.

Author(s)

Duncan Murdoch

See Also

`skewvector-class`, `skewmatrix`, `rotmatrix`, `rotvector`, `eulerzyx`, `eulerzxz`, `quaternion`

Examples

```r
x <- skewvector(c(1,0,0))
x
rotmatrix(x)
rotation.angle(x)
```
vector-classes

Orientation classes

Description

An vector of orientations, each represented by a vector of numbers. Each of these types stores orientations as rows of a matrix in slot \(x \).

The \texttt{eulerzyx} class uses 3 Euler angles in the roll-pitch-yaw scheme (rotation about Z axis, then Y axis, then X axis).

The \texttt{eulerzxz} class uses 3 Euler angles in the X system scheme (rotation about Z axis, then X axis, then Z axis again).

The \texttt{rotvector} class uses the 9 components of a 3 x 3 rotation matrix, stored in column-major order.

The \texttt{quaternion} class uses the 4 components of a unit quaternion.

The \texttt{skewvector} class uses the 3 non-zero components of a skew-symmetric matrix, where \((x, y, z)\) stores the matrix \(((0, -z, y), (z, 0, -x), (-y, x, 0))\).

Objects from the Class

Objects of each class can be created by calls to the corresponding constructor functions: \texttt{eulerzyx}, \texttt{eulerzxz}, \texttt{rotvector}, \texttt{quaternion}, \texttt{skewmatrix} and \texttt{skewvector}.

Slots

\(x \): An \(n \times m \) matrix object holding the vector representations, where \texttt{m} is 3, 4, or 9.

Extends

Class "orientation", directly. Class "vector", by class "orientation".

Methods

\([, \texttt{[<- Extract or assign to subvector}}

\([, \texttt{[<- Extract or assign to an entry}}

\texttt{length} The length of the \texttt{orientation} vector

\texttt{coerce} Coerce methods are defined to convert all \texttt{orientation} descendants from one to another, and to coerce an appropriately shaped matrix or array to a \texttt{rotmatrix}

Author(s)

Duncan Murdoch

See Also

Constructor and coercion functions \texttt{rotmatrix}, \texttt{eulerzyx}, \texttt{eulerzxz}, \texttt{rotvector}, \texttt{quaternion}, and \texttt{skewvector}.

Classes \texttt{matrix-classes}, \texttt{orientation-class}.
weighted.mean-methods

Examples

```r
x <- eulerzyx(0, pi/4, 0)
x
eulerzxz(x)
rotmatrix(x)
rotvector(x)
quaternion(x)
skewvector(x)
```

Weighted mean function

Description

The weighted mean function.

Details

The weighted mean for orientations is the nearest SO(3) matrix to the entrywise weighted mean of the `rotmatrix-class` matrices.

Methods

- `x = "ANY", w = "ANY", na.rm = "ANY"` standard weighted mean function
- `x = "orientation", w = "numeric", na.rm = "missing"` weighted mean for orientations
Index

*Topic algebra
 eulerzxz, 3
 eulerzyx, 4
 nearest, 7
 quaternion, 11
 rotation.distance, 12
 rotnmatrix, 13
 rotvector, 14
 skewmatrix, 15
 skewvector, 16

*Topic array
 eulerzxz, 3
 eulerzyx, 4
 nearest, 7
 orientlib, 9
 quaternion, 11
 rotation.distance, 12
 rotnmatrix, 13
 rotvector, 14
 skewmatrix, 15
 skewvector, 16

*Topic classes
 matrix-classes, 5
 orientation-class, 8
 vector-classes, 17

*Topic dynamic
 boat3d, 1
 orientlib, 9

*Topic hplot
 boat3d, 1
 orientlib, 9

*Topic methods
 coerce-methods, 3
 index-methods, 5
 length-methods, 5
 matrix-methods, 6
 mean-methods, 6
 weighted.mean-methods, 18

*Topic regression
 orientlm, 10
 [, eulerzxz-method
 (index-methods), 5
 [, eulerzyx-method
 (index-methods), 5
 [, quaternion-method
 (index-methods), 5
 [, rotnmatrix-method
 (index-methods), 5
 [, rotvector-method
 (index-methods), 5
 [, skewmatrix-method
 (index-methods), 5
 [, skewvector-method
 (index-methods), 5
 [, <-, eulerzxz-method
 (index-methods), 5
 [, <-, eulerzyx-method
 (index-methods), 5
 [, <-, quaternion-method
 (index-methods), 5
 [, <-, rotnmatrix-method
 (index-methods), 5
 [, <-, rotvector-method
 (index-methods), 5
 [, <-, skewmatrix-method
 (index-methods), 5
 [, <-, skewvector-method
 (index-methods), 5
 [[], eulerzxz-method
 (index-methods), 5
 [[], eulerzyx-method
 (index-methods), 5
 [[], quaternion-method
 (index-methods), 5
 [[], rotnmatrix-method
 (index-methods), 5
 [[], rotvector-method
 (index-methods), 5
 [[], skewmatrix-method
 (index-methods), 5
 [[], skewvector-method
 (index-methods), 5
 [[]<-, eulerzxz-method
 (index-methods), 5
 [[]<-, eulerzyx-method
 (index-methods), 5
INDEX

[[<-, quaternion-method (index-methods), 5
[[<-, rotmatrix-method (index-methods), 5
[[<-, rotvector-method (index-methods), 5
[[<-, skewmatrix-method (index-methods), 5
[[<-, skewvector-method (index-methods), 5
%*%, orientation, orientation-method (matrix-methods), 6
^, orientation, numeric-method (matrix-methods), 6
boat3d, 1, 9
coerce, array, orientation-method (coerce-methods), 3
c coerce, eulerzxz, rotmatrix-method (coerce-methods), 3
c coerce, eulerzyx, rotmatrix-method (coerce-methods), 3
c coerce, matrix, eulerzxz-method (coerce-methods), 3
c coerce, matrix, eulerzyx-method (coerce-methods), 3
c coerce, matrix, orientation-method (coerce-methods), 3
c coerce, orientation, eulerzxz-method (coerce-methods), 3
c coerce, orientation, eulerzyx-method (coerce-methods), 3
c coerce, orientation, quaternion-method (coerce-methods), 3
c coerce, orientation, rotvector-method (coerce-methods), 3
c coerce, orientation, skewmatrix-method (coerce-methods), 3
c coerce, orientation, skewvector-method (coerce-methods), 3
c coerce, quaternion, rotmatrix-method (coerce-methods), 3
c coerce, rotvector, rotmatrix-method (coerce-methods), 3
c coerce, skewmatrix, rotmatrix-method (coerce-methods), 3
c coerce, skewmatrix, skewvector-method (coerce-methods), 3
c coerce, skewvector, quaternion-method (coerce-methods), 3
c coerce, skewvector, rotmatrix-method (coerce-methods), 3
c coerce-methods, 3
djmrgl, 2, 9
eulerzxz, 3, 9, 12–17
eulerzxz, orientation, missing, missing-method (eulerzxz), 3
eulerzxz-class (vector-classes), 17
eulerzyx, 4, 9, 12–17
eulerzyx, orientation, missing, missing-method (eulerzyx), 4
eulerzyx-class, 4
eulerzyx-class (vector-classes), 17
index-methods, 5
length, eulerzxz-method (length-methods), 5
length, eulerzyx-method (length-methods), 5
length, quaternion-method (length-methods), 5
length, rotmatrix-method (length-methods), 5
length, rotvector-method (length-methods), 5
length, skewmatrix-method (length-methods), 5
length, skewvector-method (length-methods), 5
length-methods, 5
lm, 11
matrix-classes, 8, 17
matrix-classes, 5
matrix-methods, 6
mean, ANY-method (mean-methods), 6
mean, orientation-method (mean-methods), 6
mean-methods, 6
nearest, 7
nearest. orthog, 9
nearest. SO3, 9, 10
orientation, 2, 5, 9, 17
orientation (orientation-class), 8
orientation-class, 6, 7, 11, 17
orientation-class, 8
orientlib, 9
orientlm, 2, 9, 10
INDEX

par3d, 2
quaternion, 4, 9, 11, 13–17
quaternion, orientation-method
 (quaternion), 11
quaternion-class, 11, 12
quaternion-class
 (vector-classes), 17
rgl, 2, 9
rotation.angle, 9, 12, 13
rotation.angle
 (rotation.distance), 12
rotation.distance, 9, 12
rotmatrix, 4–6, 9, 10, 12, 13, 14–17
rotmatrix, orientation-method
 (rotmatrix), 13
rotmatrix-class, 13, 18
rotmatrix-class, 13
rotmatrix-class (matrix-classes), 5
rotvector, 4, 9, 12, 13, 14, 15–17
rotvector, orientation-method
 (rotvector), 14
rotvector-class, 14
rotvector-class (vector-classes), 17
scatterplot3d, 2, 9
skewmatrix, 4–6, 9, 12–14, 15, 16, 17
skewmatrix, orientation-method
 (skewmatrix), 15
skewmatrix-class, 15
skewmatrix-class
 (matrix-classes), 5
skewvector, 4, 9, 12–15, 16, 17
skewvector, orientation-method
 (skewvector), 16
skewvector-class, 15, 16
skewvector-class
 (vector-classes), 17
t, orientation-method
 (matrix-methods), 6
vector-classes, 6, 8
vector-classes, 17
weighted.mean, ANY, ANY, ANY-method
 (weighted.mean-methods), 18
weighted.mean, orientation, numeric, missing-method
 (weighted.mean-methods), 18
weighted.mean-methods, 18