The mprobit Package

July 27, 2006

Version 0.9-2

Date 2006-07-27

Title Multivariate probit model for binary/ordinal response

Author Harry Joe <harry@stat.ubc.ca>, Laing Wei Chou and Hongbin Zhang

Maintainer Hongbin Zhang <hongbinzhang711@yahoo.com>

Depends R (>= 1.8.0)

Description Multivariate normal rectangle probabilities (positive exchangeable, general, approximations);

LazyLoad yes

License GPL version 2 or newer

R topics documented:

binaryar ... 2
binaryex ... 2
exchmvn ... 2
mprobit ... 4
mvn.deriv ... 7
mvnapp ... 10
ordinalex ... 12
ordprobit ... 12
ordprobit.univar .. 15
pmnorm ... 16

Index 18
Binaryar Multivariate Binary Test Data Set 2

Description
A simulated data set with a binary response \(y \), a covariate \(x \), and a cluster group variable \(id \). Used in examples for mprobit function. The values used for the simulation are: \(\beta_0 = -0.3 \), \(\beta_1 = 0.4 \), latent AR(1) correlation = 0.7

Usage
\[
data(binaryar)
\]

Binaryex Multivariate Binary Test Data Set 1

Description
A simulated data set with a binary response \(y \), a covariate \(x \), and a cluster group variable \(id \). Used in examples for mprobit function. The values used for the simulation are: \(\beta_0 = 0.3 \), \(\beta_1 = 0.2 \), latent exchangeable correlation = 0.6

Usage
\[
data(binaryex)
\]

Exchmvn Exchangeable (positive) multivariate normal

Description
Rectangle probability and derivatives of positive exchangeable multivariate normal

Usage
\[
exchmvn(lb, ub, rh, mu=0, scale=1, eps = 1.e-06)
exchmvn.deriv.margin(lb, ub, rh, k, ksign, eps = 1.e-06)
exchmvn.deriv.rho(lb, ub, rh, eps = 1.e-06)
\]
exchmvn

Arguments

- lb: vector of lower limits of integral/probability
- ub: vector of upper limits of integral/probability
- rh: correlation, rho
- mu: mean vector
- scale: standard deviation
- eps: tolerance for numerical integration
- k: margin for which derivative is to be taken, that is, deriv of exchmvn(lb,ub,rh) with respect to lb[k] or ub[k]; use exchmvn.deriv.rh for deriv of exchmvn(lb,ub,rh) with respect to rho
- ksign: =-1 for deriv of exchmvn(lb,ub,rh) with respect to lb[k] =+1 for deriv of exchmvn(lb,ub,rh) with respect to ub[k]

Value

rectangle probability or a derivative

Author(s)

H. Joe, Statistics Department, UBC

References

See Also

Examples

The tests here show clearly what the function parameters are.
step size for numerical derivatives (accuracy of exchmvn etc about 1.e-6)
heps = 1.e-4

cat("case 1: m=3
")
m=3
a=c(-1,-1,-1)
b=c(2,1.5,1)
rh=.6
pr=exchmvn(a,b,rh)
cat("pr=exchmvn(avec,bvec,rh)="",pr,"\n")
cat("derivative wrt rho\n")
rh2=rh+heps
pr2=exchmvn(a,b,rh2)
drh.numerical= (pr2-pr)/heps
drh.analytic= exchmvn.deriv.rho(a,b,rh)
cat(" numerical: ", drh.numerical, ", analytic: ", drh.analytic,"\n")
cat("derivative wrt a_k,b_k, k=1,...,"m,"\n")
for(k in 1:m)
{ cat(" k="", k, " lower\n")
a2=a
mprobit

Maximum Likelihood for Repeated Measures Multivariate Binary Probit Model

Description

Maximum Likelihood for Repeated Measures Multivariate Binary Probit: Exchangeable, AR(1) and Unstructured Correlation Matrices. Quasi-Newton minimization of negative log-likelihood is used.
with approximation of Joe (1995) for rectangle probabilities for AR(1) and unstructured correlation, and one-dimensional Romberg integration for exchangeable correlation.

Usage

mprobit(x, y, id, corstr="exch", iprint=0, startpar=0)
or
mprobit.formula(formula, id, data, corstr="exch", iprint=0, startpar=0)
or
mprobit.exch(x, y, id, iprint=0, startpar=0)
mprobit.ar(x, y, id, iprint=0, startpar=0)
mprobit.unstr(x, y, id, iprint=0, startpar=0)

Arguments

x vector or matrix of explanatory variables. Each row corresponds to an observation and each column to a variable. The number of rows of x should equal the number of data values in y. Missing values are not allowed.
y numeric vector containing the binary response (coded with values of 0,1). Missing values are not allowed.
id group or cluster id, should be a vector of positive integers. If AR(1) correlation, records are assumed to be ordered within each cluster id. For unstructured correlation, the cluster size must be constant, and records are assumed to be ordered the same way with each cluster id (i.e., jth record within each cluster refers to a common time/condition for the repeated measurement). For AR(1) and exchangeable correlation, cluster size can vary. For the formula version, include the data structure.
formula For the formula version of mprobit, a formula expression as for other regression models, of the form "response predictors".
data For the formula version of mprobit, the data frame which contains the variables in the formula, and the cluster id variable.
corstr For mprobit as a front end to the other three functions, corstr="exch" means exchangeable correlation (the default); corstr="ar" means AR(1) correlation; corstr="unstr" means unstructured correlation (in which case cluster size must be a constant).
iprint logical indicator, default is FALSE, for whether the iterations for numerical maximum likelihood should be printed.
startpar initial parameter vector in the order: regression coefficients, correlation parameter(s). If not supplied, default = 0, startpar will be generated automatically.

Details

To get an initial version working, there are constraints: (a) For AR(1) and unstructured correlation, the maximum cluster size is 19 (although the joint probabilities get to be too small well before this limit is reached); (b) The maximum total number of parameters (regression and latent correlation parameters combined is 23). So this means a smaller upper bound on the number of predictors for the unstructured correlation.

Also the performance of the quasi-Newton algorithm gets worse as the number of parameters increase, particular with the sample size (number of clusters) is too small.

The default starting point used by the code should usually be OK. If the returned cov=estimated covariance matrix is the identity matrix, then the quasi-Newton iterations did not finish cleanly
with a gradient vector that is near zero. If this case, it would be useful to use iprint=1 to print the iterations, and try different starting points in startpar to check on the sensitivity to the starting point. The SE estimates are better if the quasi-Newton iterations finish with gradient vector closer to zero.

Value

list of MLE of parameters and their associated standard errors, in the order of b0,b1,b2...b(number of covariates), rho(s); order of rhos is r12,r13,...r23,...r(d-1,d) for unstructured

negloglik value of negative log-likelihood, evaluated at MLE
beta MLE of regression parameters
rho MLE of latent correlation parameter for AR(1) and exchangeable correlation
rhomat MLE of matrix of latent correlation parameter for unstructured correlation
mle MLE of all parameters for unstructured correlation
cov estimated covariance matrix of the parameters

Author(s)

H. Joe, Statistics Department, UBC, with assistance of Laing Wei Chou

References

Examples

first test data set
data(binaryex)
x=binaryex$x
y=binaryex$y
id=binaryex$id

various ways of using mprobit are shown here
exchangeable dependence
out.exch = mprobit.exch(x,y,id)
print(out.exch)

AR(1) dependence
out.ar = mprobit(x,y,id,corstr="ar")
print(out.ar)

unstructured correlation matrix
out.unstr = mprobit.formula(y~x,binaryex$id,data=binaryex,corstr="unstr")
print(out.unstr)

second test data set
data(binaryar)
dat=binaryar
x=dat$x
```r
y = dat$y
id = dat$id
x2 = x * x
dat$x2 = x2

# exchangeable dependence
out2.exch = mprobit.exch(cbind(x, x2), y, id)
print(out2.exch)

# AR(1) dependence
out2.ar = mprobit.formula(y ~ x + x2, dat$id, data = dat, corstr = "ar")
print(out2.ar)

# varying cluster sizes
set.seed(123)
ncl = nrow(dat) / 4
idel = sort(sample(ncl, ncl / 4))
idel = idel * 4
datsub = dat[-idel,]
out3.ar = mprobit.formula(y ~ x + x2, datsub$id, data = datsub, corstr = "ar")
print(out3.ar)
```

mvn.deriv

Derivatives of Multivariate Normal Rectangle Probabilities

Description

Derivatives of Multivariate Normal Rectangle Probabilities based on Approximations

Usage

```r
mvn.deriv.margin(lb, ub, mu, sigma, k, ksign, type = 1, eps = 1.e-05, nsim = 0)
mvn.deriv.rho(lb, ub, mu, sigma, j1, k1, type = 1, eps = 1.e-05, nsim = 0)
```

Arguments

- **lb**: vector of lower limits of integral/probability
- **ub**: vector of upper limits of integral/probability
- **mu**: mean vector
- **sigma**: covariance matrix, it is assumed to be positive-definite
- **type**: indicator, type = 1 refers to the first order approximation, type = 2 is the second order approximation.
- **eps**: accuracy/tolerance for bivariate marginal rectangle probabilities
- **nsim**: an optional integer if random permutations are used in the approximation for dimension >= 6; nsim = 2000 recommended for dim >= 6
- **k**: margin for which derivative is to be taken, that is, deriv of mvnapp(lb, ub, mu, sigma) with respect to lb[k] or ub[k];
- **ksign**: = -1 for deriv of mvnapp(lb, ub, mu, sigma) with respect to lb[k] = +1 for deriv of mvnapp(lb, ub, mu, sigma) with respect to ub[k];
- **j1**: correlation for which derivative is to be taken, that is, deriv of mvnapp(lb, ub, mu, sigma) with respect to rho[j1, k1], where rho is a correlation corresponding to sigma
- **k1**: See above explanation with j1
```
mvn.deriv

Value
derivative with respect to margin lb[k], ub[k], or correlation rho[j][k] corresponding to sigmamat-

Author(s)
H. Joe, Statistics Department, UBC

References
Joe, H. (1995) JASA TODO, complete

See Also
mvnapp

Examples

# step size for numerical derivatives (accuracy of mvnapp etc may be about 1.e-4 to 1.e-5)
heps = 1.e-3

cat("compare numerical and analytical derivatives based on mvnapp\n")
cat("\ncase 1: dim=3\n");
m=3
mu=rep(0,m)
a=c(0,0,0)
b=c(1,1.5,2)
rr=matrix(c(1,3,3,3,1,4,3,4,1),m,m)
pr=mvnapp(a,b,mu,rr)$pr

# not checking ifail returned from mvnapp
cat("pr=mvnapp(avec,bvec,mu=0,sigma=corrmat)="",pr,"\n")
cat("derivative wrt a_k,b_k, k=1,...,",m,"\n")

for(k in 1:m)
{ cat(" k="", k, " lower\n")
a2=a
a2[k]=a[k]+heps
pr2=mvnapp(a2,b,mu,rr)$pr
da.numerical = (pr2-pr)/heps
da.analytic= mvn.deriv.margin(a,b,mu,rr,k,-1)$deriv
cat(" numerical: ", da.numerical, ", analytic: ", da.analytic,"\n")
cat(" k="", k, " upper\n")
b2=b
b2[k]=b[k]+heps
pr2=mvnapp(a,b2,mu,rr)$pr
db.numerical = (pr2-pr)/heps
db.analytic= mvn.deriv-margin(a,b,mu,rr,k,1)$deriv
cat(" numerical: ", db.numerical, ", analytic: ", db.analytic,"\n")
}

cat("derivative wrt rho(j,k)\n")
for(j in 1:(m-1))
{ for(k in (j+1):m)
 | cat(" (j,k)="", j,k,"\n")
rr2=rr
```r
rr2[j,k] = rr[j,k] + heps
drh.numerical = (pr2 - pr) / heps
drh.analytic = mvn.deriv.rho(a, b, mu, rr2, j, k)$deriv
cat(" numerical: ", drh.numerical, ", analytic: ", drh.analytic,
```

```r
cat("\ncase 2: dim=5\n");
m=5
mu=rep(0, m)
a=c(0, 0, 0, -1, -1)
b=c(1, 1.5, 2, 2, 2)
rr=matrix(c(1, .3, .3, .3, .3, .3, .4, .4, .4,
 .3, .4, .4, .4, .4, .4, .4), m, m)
pr=mvnapp(a, b, mu, rr)$pr
not checking ifail returned from mvnapp
cat("pr=mvnapp(avec,bvec,mu=0,sigma=corrmat)=",pr,\n"
```

```r
cat("derivative wrt a_k,b_k, k=1,...,m,"\n")
for(k in 1:m)
{
cat(" k", k, " lower\n")
a2=a
a2[k]=a[k] + heps
pr2=mvnapp(a2, b, mu, rr)$pr
da.numerical = (pr2 - pr) / heps
da.analytic = mvn.deriv.margin(a, b, mu, rr, k,-1)$deriv
cat(" numerical: ", da.numerical, ", analytic: ", da.analytic,
```

```r
cat(" k", k, " upper\n")
b2=b
b2[k]=b[k] + heps
pr2=mvnapp(a, b2, mu, rr)$pr
db.numerical = (pr2 - pr) / heps
db.analytic = mvn.deriv.margin(a, b, mu, rr, k,1)$deriv
cat(" numerical: ", db.numerical, ", analytic: ", db.analytic,
```

```r
cat("derivative wrt rho(j,k): first order approx\n")
for(j in 1:(m-1))
{
for(k in (j+1):m)
{
cat(" (j,k)=", j,k,\n")
rr2=rr
rr2[j,k] = rr[j,k] + heps
rr2[k,j] = rr[k,j] + heps
pr2=mvnapp(a, b, mu, rr2)$pr
drh.numerical = (pr2 - pr) / heps
drh.analytic = mvn.deriv.rho(a, b, mu, rr2, j, k)$deriv
cat(" numerical: ", drh.numerical, ", analytic: ", drh.analytic,
```

```r

cat("\nsecond order approx\n")
pr=mvnapp(a, b, mu, rr,type=2)$pr
cat("pr=mvnapp(avec,bvec,mu=0,sigma=corrmat,type=2)=",pr,\n"\n")
```
```
mvnapp

MVN Rectangle Probabilities

Description

Approximation to multivariate normal rectangle probabilities using methods in Joe (1995), JASA

Usage

```r
mvnapp(lb, ub, mu, sigma, type=1, eps=1.e-05, nsim=0)
```

Arguments

- `lb` vector of lower limits of integral/probability
- `ub` vector of upper limits of integral/probability
- `mu` mean vector
- `sigma` covariance matrix, it is assumed to be positive-definite
- `type` indicator, type=1 refers to the first order approximation, type=2 is the second order approximation.
mvnapp

eps accuracy/tolerance for bivariate marginal rectangle probabilities
nsim an optional integer if random permutations are used in the approximation for
dimension >=6; nsim=2000 recommended for dim>=6

Value

prob rectangle probability with approximation
esterr indicator of accuracy in the approximation
ifail = 0 if no problems
 >= 1 if problems from using Schervish’s code in dimensions 2 to 4.

Author(s)

H. Joe, Statistics Department, UBC

References

See Also

pmnorm.

Examples

m<-2
rh<-0.5
a<-c(-1,-1)
b<-c(1,1)
mu<-rep(0,m)
s<-matrix(c(1,rh,rh,1),2,2)
print(pmnorm(a,b,mu,s))
print(mvnapp(a,b,mu,s))
print(mvnapp(a,b,mu,s,type=2))
print(mvnapp(a,b,mu,s,type=2,nsim=3))

m<-3
rh<-0.3
a<-c(-1,-1,-2)
b<-c(1,1,.5)
mu<-rep(0,m)
s<-matrix(c(1,.5,.6,.5,1,.7,.6,.7,1),3,3)
print(pmnorm(a,b,mu,s))
print(mvnapp(a,b,mu,s))
print(mvnapp(a,b,mu,s,type=2))
print(mvnapp(a,b,mu,s,type=2,nsim=3))

m<-4
rh<- -0.1
a<-c(-1,-2.5,-2,-1.5)
b<-c(1.68,1.11,.5,.25)
mu<-rep(0,m)
s<-matrix(c(1,.5,.3,.4,.5,1,.5,.4,.3,.5,1,.4,.4,.4,.4,1),m,m)
print(pmnorm(a,b,mu,s))
print(mvnapp(a,b,mu,s))
print(mvnapp(a,b,mu,s,type=2))
print(mvnapp(a,b,mu,s,type=2,nsim=3))

m<-5
rh<-.4
a<-rep(-1,m)
b<-rep(2,m)
u<-rep(0,m)
s<-matrix(c(1,rh,rh,rh,rh,1,rh,rh,rh,rh,1,rh,rh,rh,rh,rh,1,rh,rh,rh,rh,rh,1,rh,rh,rh,rh,rh,1),m,m)
print(mvnapp(a,b,mu,s))
print(mvnapp(a,b,mu,s,type=2))
print(mvnapp(a,b,mu,s,type=2,nsim=3))

m<-6
a<-c(-1,-1,-1,-1.5,-1,-2)
b<-rep(7,m)
u<-rep(0,m)
s<-matrix(c(1,rh,rh,rh,rh,rh,1,rh,rh,rh,rh,rh,1,rh,rh,rh,rh,rh,rh,1,rh,rh,rh,rh,rh,rh,1,rh,rh,rh,rh,rh,1),m,m)
print(mvnapp(a,b,mu,s))
print(mvnapp(a,b,mu,s,type=2))
print(mvnapp(a,b,mu,s,type=2,nsim=3))

ordinalex
Multivariate Ordinal Test Data Set

Description
A simulated data set with an ordinal response y (3 categories), a covariate x, and a cluster group variable id. Used in examples for ordprobit function. The values used for the simulation are: cutpt1=-0.5, cutpt2=0.3, beta1=0.4, latent exchangeable correlation = 0.6

Usage
data(ordinalex)

ordprobit
Maximum Likelihood for Repeated Measures Multivariate Ordinal Probit Model

Description
Maximum Likelihood for Repeated Measures Multivariate Ordinal Probit: Exchangeable, AR(1) and Unstructured Correlation Matrices. Quasi-Newton minimization of negative log-likelihood is used with approximation of Joe (1995) for rectangle probabilities for AR(1) and unstructured correlation, and one-dimensional Romberg integration for exchangeable correlation.
ordprobit

Usage

ordprobit(x,y,id,corstr="exch",iprint=0,startpar=0)
or
ordprobit.formula(formula,id,data,corstr="exch",iprint=0,startpar=0)
or
ordprobit.exch(x,y,id,iprint=0,startpar=0)
ordprobit.ar(x,y,id,iprint=0,startpar=0)
ordprobit.unstr(x,y,id,iprint=0,startpar=0)

Arguments

x vector or matrix of explanatory variables. Each row corresponds to an observation and each column to a variable. The number of rows of x should equal the number of data values in y, and there should be fewer columns than rows. Missing values are not allowed.

y numeric vector containing the ordinal response. The values must be in the range 1, 2, ..., number of categories. Missing values are not allowed.

id group or cluster id, should be a vector of positive integers. If AR(1) correlation, records are assumed to be ordered within each cluster id. If unstructured correlation, the cluster size must be constant, and records are assumed to be ordered the same way with each cluster id (i.e., jth record within each cluster refers to a common time/condition for the repeated measurement). For AR(1) and exchangeable correlation, cluster size can vary. For the formula version, include the data structure.

formula For the formula version of ordprobit, a formula expression as for other regression models, of the form "response predictors".

data For the formula version of ordprobit, the data frame which contains the variables in the formula, and the cluster id variable.

corstr For ordprobit as a front end to the other three functions, corstr="exch" means exchangeable correlation (the default); corstr="ar" means AR(1) correlation; corstr="unstr" means unstructured correlation (in which case cluster size must be a constant).

iprint logical indicator, default is FALSE, for whether the iterations for numerical maximum likelihood should be printed.

startpar initial parameter vector in the order: regression coefficients, correlation parameter(s). If not supplied, default = 0, startpar will be generated by the automatically.

Details

To get an initial version working, there are constraints: (a) For AR(1) and unstructured correlation, the maximum cluster size is 19 (although the joint probabilities get to be too small well before this limit is reached); (b) The maximum total number of parameters (regression and latent correlation parameters combined is 23). So this means a smaller upper bound on the number of predictors for the unstructured correlation.

Also the performance of the quasi-Newton algorithm gets worse as the number of parameters increase, particular with the sample size (number of clusters) is too small.

The default starting point used by the code should usually be OK. If the returned cov=estimated covariance matrix is the identity matrix, then the quasi-Newton iterations did not finish cleanly with a gradient vector that is near zero. If this case, it would be useful to use iprint=1 to print the
iterations, and try different starting points in startpar to check on the sensitivity to the starting point. The SE estimates are better if the quasi-Newton iterations finish with gradient vector closer to zero.

Value

list of MLE of parameters and their associated standard errors, in the order cutpt1,...,cutpt(number of categ-1),b1,...,b(number of covariates), rho(s); order of rhos is r12,r13,...,r23,...,r(d-1,d) for unstructured

- **negloglik**: value of negative log-likelihood, evaluated at MLE
- **cutpts**: MLE of ordered cutpoint parameters
- **beta**: MLE of regression parameters
- **rho**: MLE of latent correlation parameter for AR(1) and exchangeable correlation
- **rhomat**: MLE of matrix of latent correlation parameter for unstructured correlation
- **mle**: MLE of all parameters for unstructured correlation
- **cov**: estimated covariance matrix of the parameters

Author(s)

H. Joe, Statistics Department, UBC, with assistance of Laing Wei Chou

References

Examples

data(ordinalex)
x=ordinalex$x
y=ordinalex$y
id=ordinalex$id
various ways of using ordprobit are shown here
exchangeable dependence
ord.exch = ordprobit.exch(x,y,id)
print(ord.exch)

AR(1) dependence
ord.ar = ordprobit(x,y,id,corstr="ar")
print(ord.ar)

unstructured correlation matrix
ord.unstr = ordprobit.formula(y~x,ordinalex$id,data=ordinalex,corstr="unstr")
print(ord.unstr)
Maximum Likelihood for Ordinal Probit Model

Description

Maximum Likelihood for Ordinal Probit: Newton-Raphson minimization of negative log-likelihood.

Usage

```r
ordprobit.univar(x, y, iprint=0, maxiter=20, toler=1.e-6)
```

Arguments

- **x**: vector or matrix of explanatory variables. Each row corresponds to an observation and each column to a variable. The number of rows of `x` should equal the number of data values in `y`, and there should be fewer columns than rows. Missing values are not allowed.
- **y**: numeric vector containing the ordinal response. The values must be in the range 1,2,..., number of categories. Missing values are not allowed.
- **iprint**: logical indicator, default is FALSE, for whether the iterations for numerical maximum likelihood should be printed.
- **maxiter**: maximum number of Newton-Raphson iterations, default = 20.
- ** toler**: tolerance for convergence in Newton-Raphson iterations, default = 1.e-6.

Details

If `ordprobit` for repeated measures ordinal probit fails to converge from the simple starting point in that function, this function `ordprobit.univar` should provide a better starting point. It is also equivalent to `ordprobit` with an identity latent correlation matrix.

The ordinal probit model is similar to the ordinal logit model (proportion odds logistic regression : `polr` in library MASS). The parameter estimate of ordinal logit are roughly 1.8 to 2 times those of ordinal probit (the signs of the parameters in `polr` may be different, as this function may be using a different orientation for the latent variable.

Value

- list of MLE of parameters and their associated standard errors, in the order cutpt1,...,cutpt(number of categ-1),b1,...b(number of covariates).
- **negloglik**: value of negative log-likelihood, evaluated at MLE
- **cutpts**: MLE of ordered cutpoint parameters
- **beta**: MLE of regression parameters
- **cov**: estimated covariance matrix of the parameters

References

Examples

data(ordinalex)
x=as.vector(ordinalex$x)
y=ordinalex$y
ord.univar = ordprobit.univar(x,y)
print(ord.univar)
startp=c(ord.univar$cutpts,ord.univar$beta,0.5)
ord.exch <- ordprobit.exch(x,y,ordinalex$id,iprint=0,startpar=startp)
print(ord.exch)

pmnorm

MVN Rectangle Probabilities

Description

Multivariate normal rectangle probabilities using Schervish’s method

Usage

pmnorm(lb, ub, mu, sigma, eps = 1.e-05)

Arguments

lb vector of lower limits of integral/probability
ub vector of upper limits of integral/probability
mu mean vector of the multivariate normal density
sigma covariance matrix, it is assumed to be positive-definite
eps tolerance for integration

Value

out probability of the multivariate normal rectangle region
perr estimated accuracy
ifault return codes from the referenced paper
= 0 if no problems
= 1 or 2 if eps too small
= 3 if dimension is not between 1 and 6 inclusive
= 4 if covariance matrix is not positive-definite

Author(s)

H. Joe, Statistics Department, UBC

References

See Also

mvnapp.

Examples

```r
rh <- 0.3
m <- 2
a <- c(-1, -1)
b <- c(1, 1)
mu <- rep(0, m)
s <- matrix(c(1, rh, rh, rh, 1), 2, 2)
print(pmnorm(a, b, mu, s))

m <- 3
a <- c(-1, -1, -2)
b <- c(1, 1, .5)
mu <- rep(0, m)
s <- matrix(c(1, rh, rh, rh, rh, rh, rh, rh, rh, 1), 3, 3)
print(pmnorm(a, b, mu, s))

m <- 4
a <- c(-1, -2.5, -2, -1.5)
b <- c(1.68, 1.11, .5, .25)
mu <- rep(0, m)
s <- matrix(c(1, rh, 1), 4, 4)
print(pmnorm(a, b, mu, s))
```
Index

*Topic datasets
 binaryar, 1
 binaryex, 2
 ordinalex, 12

*Topic models
 exchmvn, 2
 mprobit, 4
 mvn.deriv, 7
 mvnapp, 10
 ordprobit, 12
 ordprobit.univar, 14
 pmnorm, 16

binaryar, 1
binaryex, 2

exchmvn, 2
exchmvn.deriv.margin(exchmvn), 2
exchmvn.deriv.rho(exchmvn), 2

mprobit, 4
mvn.deriv, 7
mvnapp, 7, 10, 16

ordinalex, 12
ordprobit, 12
ordprobit.univar, 14

pmnorm, 11, 16