The ljr Package

July 16, 2007

Version 1.0-1
Date 2007-07-09
Title Logistic Joinpoint Regression
Author Michal Czajkowski, Ryan Gill, Greg Rempala
Maintainer Ryan Gill <rsgill01@louisville.edu>
Description Fits and tests logistic joinpoint models.
License GPL (version 2 or later)

R topics documented:

ljr0 ... 2
ljr01 ... 3
ljr02 ... 5
ljr1 ... 6
ljr11 .. 8
ljr12 .. 9
ljr2 ... 11
ljr22 .. 12
ljrb .. 13
ljrb2 ... 15
ljrf ... 16
ljrf2 ... 18
ljrk .. 19
ljrk .. 21
ljk ... 22

Index 25
ljr0

MLE with 0 joinpoints

Description

Determines the maximum likelihood estimate of model coefficients in the logistic joinpoint regression model with no joinpoints.

Usage

```r
ljr0(y, n, tm, X, ofst)
```

Arguments

- `y`: the vector of Binomial responses.
- `n`: the vector of sizes for the Binomial random variables.
- `tm`: the vector of observation times.
- `X`: a design matrix containing other covariates.
- `ofst`: a vector of known offsets for the logit of the response.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of `n`.

Value

- `Coef`: A table of coefficient estimates.
- `wlik`: The maximum value of the re-weighted log-likelihood.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill (rsgill01@louisville.edu).

References

See Also

`ljr01, ljr01, ljr01, ljr01, ljr01`
Examples

N=20
m=2
k=0
beta=c(0.1,0.1,-0.05)
gamma=c(0.1)
ofst=runif(N,-2.5,-1.5)
x1=round(runif(N,-0.5,9.5))
x2=round(runif(N,-0.5,9.5))
X=cbind(x1,x2)
n=rep(1000000,N)
tm=c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10)
eta=ofst+beta[1]+gamma[1]*tm
if (m>0)
 for (i in 1:m)
 eta=eta+beta[i+1]*X[,i]
if (k>0)
 for (i in 1:k)
 eta=eta+gamma[i+1]*pmax(tm-tau[i],0)
y=rbinom(N,size=n,prob=exp(eta)/(1+exp(eta)))
temp.ljr=ljr0(y,n,tm,X,ofst)

ljr01

Perform test of 0 vs 1 joinpoints.

Description

This function tests the null hypothesis of 0 joinpoints versus the alternative of one joinpoint based on the likelihood ratio test statistic. The p-value is determined by a Monte Carlo method.

Usage

ljr01(y,n,tm,X,ofst,R=1000,alpha=.05)

Arguments

y the vector of Binomial responses.
n the vector of sizes for the Binomial random variables.
tm the vector of ordered observation times.
X a design matrix containing other covariates.
ofst a vector of known offsets for the logit of the response.
R number of Monte Carlo simulations.
alpha significance level of the test.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.
Value

- **pval**: The estimate of the p-value via simulation.
- **Coeff**: A table of coefficient estimates.
- **Joinpoint**: The estimates of the joinpoint, if it is significant.
- **wlik**: The maximum value of the re-weighted log-likelihood.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill (rsgill01@louisville.edu).

References

See Also

- `ljr0`, `ljr0`, `ljr0`, `ljr0`

Examples

```R
N=20
m=2
k=0
beta=c(0.1,0.1,-0.05)
gamma=c(0.1,-0.05,0.05)
ofst=runif(N,-2.5,-1.5)
x1=round(runif(N,-0.5,9.5))
x2=round(runif(N,-0.5,9.5))
X=cbind(x1,x2)
n=rep(1e9,N)
tm=c(1,1,1,2,2,3,3,4,4,4.5,5,6,6,7,7,7,7,7,7,9,9,10,10)
eta=ofst+beta[1]+gamma[1]*tm
if (m>0)
  for (i in 1:m)
    eta=eta+beta[i+1]*X[,i]
if (k>0)
  for (i in 1:k)
    eta=eta+gamma[i+1]*pmax(tm-tau[i],0)
y=rbinom(N,size=n,prob=exp(eta)/(1+exp(eta)))
temp.ljr=ljr01(y,n,tm,X,ofst,R=1000)
```
Perform test of 0 vs 2 joinpoints.

Description

This function tests the null hypothesis of 0 joinpoints versus the alternative of two joinpoints based on the likelihood ratio test statistic. The p-value is determined by a Monte Carlo method.

Usage

ljr02(y, n, tm, X, ofst, R = 1000, alpha = .05)

Arguments

- **y**: the vector of Binomial responses.
- **n**: the vector of sizes for the Binomial random variables.
- **tm**: the vector of ordered observation times.
- **X**: a design matrix containing other covariates.
- **ofst**: a vector of known offsets for the logit of the response.
- **R**: number of Monte Carlo simulations.
- **alpha**: significance level of the test.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

Value

- **pval**: The estimate of the p-value via simulation.
- **Coef**: A table of coefficient estimates.
- **Joinpoint**: The estimates of the joinpoint, if it is significant.
- **wlik**: The maximum value of the re-weighted log-likelihood.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill (rsgill01@louisville.edu).

References

See Also

ljr0, ljr0, ljr0, ljr0
Examples

```r
library(ljr, lib.loc='~/myrlibrary')
N=20
m=2
k=2
beta=c(0.1, 0.1, -0.05)
gamma=c(0.1, -0.05, 0.05)
tau=c(3.5, 6.5)
ofst=runif(N,-2.5,-1.5)
x1=round(runif(N,-0.5,9.5))
x2=round(runif(N,-0.5,9.5))
X=cbind(x1,x2)
n=rep(1e9,N)
tm=c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10)
eta=ofst+beta[1]+gamma[1]*tm
if (m>0)
  for (i in 1:m)
    eta=eta+beta[i+1]*X[,i]
if (k>0)
  for (i in 1:k)
    eta=eta+gamma[i+1]*pmax(tm-tau[i],0)
y=rbinom(N,size=n,prob=exp(eta)/(1+exp(eta)))
temp.ljr=ljr02(y,n,tm,X,ofst,R=1000)
```

ljr1

MLE with 1 joinpoint

Description

Determines the maximum likelihood estimates of model coefficients in the logistic joinpoint regression model with one joinpoint.

Usage

```r
ljr1(y,n,tm,X,ofst,summ=TRUE)
```

Arguments

- `y` the vector of Binomial responses.
- `n` the vector of sizes for the Binomial random variables.
- `tm` the vector of ordered observation times.
- `X` a design matrix containing other covariates.
- `ofst` a vector of known offsets for the logit of the response.
- `summ` a boolean indicator of whether summary tables should be returned.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of `n`.
Value

Coef A table of coefficient estimates.
Joinpoint The estimate of the joinpoint.
wlik The maximum value of the re-weighted log-likelihood.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill (rsgill01@louisville.edu).

References

See Also

ljrb2, ljrb2, ljrb2, link(ljr12), ljrb2, ljrb2

Examples

N=20
m=2
k=1
beta=c(0.1,0.1,-0.05)
gamma=c(0.1,-0.05)
tau=c(5)
ofst=runif(N,-2.5,-1.5)
x1=round(runif(N,-0.5,9.5))
x2=round(runif(N,-0.5,9.5))
X=cbind(x1,x2)
n=rep(1e9,N)
tm=c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10)
eta=ofst+beta[1]+gamma[1]*tm
if (m>0)
 for (i in 1:m)
 eta=eta+beta[i+1]*X[,i]
if (k>0)
 for (i in 1:k)
 eta=eta+gamma[i+1]*pmax(tm-tau[i],0)
y=rbinom(N,size=n,prob=exp(eta)/(1+exp(eta)))
temp.ljr=ljr1(y,n,tm,X,ofst)
ljr11

Test coefficients conditioned on K=1 joinpoint.

Description

This function performs the likelihood ratio tests to find p-values in testing the significance of each of the coefficients as well as the intercept and ordered observation times. The p-values are determined by a Monte Carlo method.

Usage

```r
ljr11(y,n,tm,X,ofst,R=1000)
```

Arguments

- `y` the vector of Binomial responses.
- `n` the vector of sizes for the Binomial random variables.
- `tm` the vector of ordered observation times.
- `X` a design matrix containing other covariates.
- `ofst` a vector of known offsets for the logit of the response.
- `R` number of Monte Carlo simulations.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

Value

- `pvals` The estimates of the p-values via simulation.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill (rsgill01@louisville.edu).

References

See Also

- `ljr1`, `ljr1`
Examples

```r
N=20
m=2
k=1
beta=c(0.1,0.1,-0.05)
gamma=c(0.1,-0.05)
tau=c(5)
ofst=runif(N,-2.5,-1.5)
x1=round(runif(N,-0.5,9.5))
x2=round(runif(N,-0.5,9.5))
X=cbind(x1,x2)
n=rep(1e9,N)
tm=c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10)
eta=ofst+beta[1]+gamma[1]*tm
if (m>0)
  for (i in 1:m)
    eta=eta+beta[i+1]*X[,i]
if (k>0)
  for (i in 1:k)
    eta=eta+gamma[i+1]*pmax(tm-tau[i],0)
y=rbinom(N,size=n,prob=exp(eta)/(1+exp(eta)))
temp.ljr=ljr11(y,n,tm,X,ofst,R=1000)
```

ljr12
Perform test of 1 vs 2 joinpoints.

Description

This function tests the null hypothesis of one joinpoint versus the alternative of two joinpoints based on the likelihood ratio test statistic. The p-value is determined by a Monte Carlo method.

Usage

```r
ljr12(y,n,tm,X,ofst,R=1000,alpha=.05)
```

Arguments

- `y` the vector of Binomial responses.
- `n` the vector of sizes for the Binomial random variables.
- `tm` the vector of ordered observation times.
- `X` a design matrix containing other covariates.
- `ofst` a vector of known offsets for the logit of the response.
- `R` number of Monte Carlo simulations.
- `alpha` significance level of the test.
Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of \(n \).

Value

- **pval**: The estimate of the p-value via simulation.
- **_coef**: A table of coefficient estimates.
- **Joinpoint**: The estimates of the joinpoint, if it is significant.
- **wlik**: The maximum value of the re-weighted log-likelihood.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill (rsgill01@louisville.edu).

References

See Also

ljr1, ljr1, ljr1, ljr1

Examples

```r
N=20
m=2
k=1
beta=c(0.1,0.1,-0.05)
gamma=c(0.1,-0.05,0.05)
tau=c(5)
ofst=runif(N,-2.5,-1.5)
x1=round(runif(N,-0.5,9.5))
x2=round(runif(N,-0.5,9.5))
X=cbind(x1,x2)
n=rep(1e9,N)
tm=c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10)
et=ofst+beta[1]+gamma[1]*tm
if (m>0)
  for (i in 1:m)
    eta=eta+beta[i+1]*X[,i]
if (k>0)
  for (i in 1:k)
    eta=eta+gamma[i+1]*pmax(tm-tau[i],0)
y=rbinom(N,size=n,prob=exp(eta)/(1+exp(eta)))
temp.ljr=ljr12(y,n,nm,X[ofst,R=1000])
```
Description

Determines the maximum likelihood estimates of model coefficients in the logistic joinpoint regression model with two joinpoints.

Usage

```r
ljr2(y, n, tm, X, ofst)
```

Arguments

- `y`: the vector of Binomial responses.
- `n`: the vector of sizes for the Binomial random variables.
- `tm`: the vector of ordered observation times.
- `X`: a design matrix containing other covariates.
- `ofst`: a vector of known offsets for the logit of the response.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of `n`.

Value

- `Coef`: A table of coefficient estimates.
- `Joinpoints`: The estimates of the joinpoints.
- `wlik`: The maximum value of the re-weighted log-likelihood.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill (rsgill01@louisville.edu).

References

See Also

`ljrb2`, `ljrb2`, `ljrb2`, `ljrb2`
Examples

N=20
m=2
k=2
beta=c(0.1,0.1,-0.05)
gamma=c(0.1,-0.05,0.1)
tau=c(3,7)
ofst=runif(N,-2.5,-1.5)
x1=round(runif(N,-0.5,9.5))
x2=round(runif(N,-0.5,9.5))
X=cbind(x1,x2)
n=rep(1e9,N)
tm=c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10)
eta=ofst+beta[1]+gamma[1]*tm
if (m>0)
 for (i in 1:m)
 eta=eta+beta[i+1]*X[,i]
if (k>0)
 for (i in 1:k)
 eta=eta+gamma[i+1]*pmax(tm-tau[i],0)
y=rbinom(N,size=n,prob=exp(eta)/(1+exp(eta)))
temp.ljr=ljr2(y,n,tm,X,ofst)

ljr22

Test coefficients conditioned on K=2 joinpoint.

Description

This function performs the likelihood ratio tests to find p-values in testing the significance of each of
the coefficients as well as the intercept and ordered observation times. The p-values are determined
by a Monte Carlo method.

Usage

ljr22(y,n,tm,X,ofst,R=1000)

Arguments

y the vector of Binomial responses.
n the vector of sizes for the Binomial random variables.
tm the vector of ordered observation times.
X a design matrix containing other covariates.
ofst a vector of known offsets for the logit of the response.
R number of Monte Carlo simulations.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.
Value

pvals The estimates of the p-values via simulation.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill (rsgill01@louisville.edu).

References

See Also

ljr2

Examples

N=20
m=2
k=2
beta=c(0.1,0.1,-0.05)
gamma=c(0.1,-0.1,0.05)
tau=c(3,6.5)
ofst=runif(N,-2.5,-1.5)
x1=round(runif(N,-0.5,9.5))
x2=round(runif(N,-0.5,9.5))
X=cbind(x1,x2)
n=rep(1e9,N)
tm=c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10)
et=ofst+beta[1]+gamma[1]*tm
if (m>0)
 for (i in 1:m)
 eta=eta+beta[i+1]*X[,i]
if (k>0)
 for (i in 1:k)
 eta=eta+gamma[i+1]*pmax(tm-tau[i],0)
y=rbinom(N,size=n,prob=exp(eta)/(1+exp(eta)))
temp.ljr=ljr22(y,n,tm,X,ofst,R=1000)

ljrb

Perform backward joinpoint selection algorithm with upper bound K.

Description

This function performs the backward joinpoint selection algorithm with K maximum possible number of joinpoints based on the likelihood ratio test statistic. The p-value is determined by a Monte Carlo method.
Usage

\texttt{ljrb(K,y,n,tm,X,ofst,R=1000,\alpha=.05)}

Arguments

\begin{itemize}
\item \texttt{K} - the pre-specified maximum possible number of joinpoints
\item \texttt{y} - the vector of Binomial responses.
\item \texttt{n} - the vector of sizes for the Binomial random variables.
\item \texttt{tm} - the vector of ordered observation times.
\item \texttt{X} - a design matrix containing other covariates.
\item \texttt{ofst} - a vector of known offsets for the logit of the response.
\item \texttt{R} - number of Monte Carlo simulations.
\item \texttt{\alpha} - significance level of the test.
\end{itemize}

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of \texttt{n}.

Value

\begin{itemize}
\item \texttt{pvals} - The estimates of the p-values via simulation.
\item \texttt{Coef} - A table of coefficient estimates.
\item \texttt{Joinpoints} - The estimates of the joinpoint, if it is significant.
\item \texttt{wlik} - The maximum value of the re-weighted log-likelihood.
\end{itemize}

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill (rsgill01@louisville.edu).

References

See Also

\texttt{ljrk,ljrk,ljrk}

Examples

\begin{verbatim}
N=20
m=2
k=0
beta=c(0.1,0.1,-0.05)
gamma=c(0.1,-0.05,0.05)
ofst=runif(N,-2.5,-1.5)
\end{verbatim}
```r
x1 = round(runif(N, -0.5, 9.5))
x2 = round(runif(N, -0.5, 9.5))
X = cbind(x1, x2)
n = rep(1e9, N)
tm = c(1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10)
if (m > 0)
  for (i in 1:m)
    eta = eta + beta[i + 1] * X[, i]
if (k > 0)
  for (i in 1:k)
    eta = eta + gamma[i + 1] * pmax(tm - tau[i], 0)
y = rbinom(N, size = n, prob = exp(eta) / (1 + exp(eta)))
temp.ljr = ljrb(2, y, n, tm, X, ofst, R = 1000)
```

ljrb2

Perform backward joinpoint selection algorithm with K=2.

Description

This function performs the backward joinpoint selection algorithm with K=2 maximum possible number of joinpoints based on the likelihood ratio test statistic. The p-value is determined by a Monte Carlo method.

Usage

```r
ljrb2(y, n, tm, X, ofst, R = 1000, alpha = .05)
```

Arguments

- `y`: the vector of Binomial responses.
- `n`: the vector of sizes for the Binomial random variables.
- `tm`: the vector of ordered observation times.
- `X`: a design matrix containing other covariates.
- `ofst`: a vector of known offsets for the logit of the response.
- `R`: number of Monte Carlo simulations.
- `alpha`: significance level of the test.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of `n`.

Value

- `pvals`: The estimates of the p-values via simulation.
- `Coef`: A table of coefficient estimates.
- `Joinpoints`: The estimates of the joinpoint, if it is significant.
- `wlik`: The maximum value of the re-weighted log-likelihood.
Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill (rsgill01@louisville.edu).

References

See Also

ljr0, ljr0, ljr0, ljr0

Examples

N=20
m=2
k=0
beta=c(0.1,0.1,-0.05)
gamma=c(0.1,-0.05,0.05)
ofst=runif(N,-2.5,-1.5)
x1=round(runif(N,-0.5,9.5))
x2=round(runif(N,-0.5,9.5))
X=cbind(x1,x2)
n=rep(1e9,N)
tm=c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10)
et=ofst+beta[1]+gamma[1]*tm
if (m>0)
 for (i in 1:m)
 eta=eta+beta[i+1]*X[,i]
if (k>0)
 for (i in 1:k)
 eta=eta+gamma[i+1]*pmax(tm-tau[i],0)
y=rbinom(N,size=n,prob=exp(eta)/(1+exp(eta)))
temp.ljr=ljrb2(y,n,tm,X,ofst,R=1000)

ljrf

Perform forward joinpoint selection algorithm with unlimited upper bound.

Description

This function performs the full forward joinpoint selection algorithm based on the likelihood ratio test statistic. The p-value is determined by a Monte Carlo method.

Usage

ljrf(y,n,tm,X,ofst,R=1000,alpha=.05)
Arguments

- `y`: the vector of Binomial responses.
- `n`: the vector of sizes for the Binomial random variables.
- `tm`: the vector of ordered observation times.
- `X`: a design matrix containing other covariates.
- `ofst`: a vector of known offsets for the logit of the response.
- `R`: number of Monte Carlo simulations.
- `alpha`: significance level of the test.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of `n`.

Value

- `pvals`: The estimates of the p-values via simulation.
- `Coef`: A table of coefficient estimates.
- `Joinpoints`: The estimates of the joinpoint, if it is significant.
- `wlik`: The maximum value of the re-weighted log-likelihood.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill (rsgill01@louisville.edu).

References

See Also

`ljrk`, `ljrk`, `ljrk`

Examples

```R
N=20
m=2
k=0
beta=c(0.1,0.1,-0.05)
gamma=c(0.1,-0.05,0.05)
ofst=runif(N,-2.5,-1.5)
x1=round(runif(N,-0.5,9.5))
x2=round(runif(N,-0.5,9.5))
X=cbind(x1,x2)
n=rep(1e9,N)
 tm=c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10)
```
eta=ofst+beta[1]+gamma[1]*tm
if (m>0)
 for (i in 1:m)
 eta=eta+beta[i+1]*X[,i]
if (k>0)
 for (i in 1:k)
 eta=eta+gamma[i+1]*pmax(tm-tau[i],0)
y=rbinom(N,size=n,prob=exp(eta)/(1+exp(eta)))
temp.ljr=ljrf(y,n,tm,X,ofst,R=1000)

ljrf2

Perform forward joinpoint selection algorithm with K=2.

Description

This function performs the forward joinpoint selection algorithm with K=2 maximum possible number of joinpoints based on the likelihood ratio test statistic. The p-value is determined by a Monte Carlo method.

Usage

ljrf2(y,n,tm,X,ofst,R=1000,alpha=.05)

Arguments

y the vector of Binomial responses.
n the vector of sizes for the Binomial random variables.
tm the vector of ordered observation times.
X a design matrix containing other covariates.
ofst a vector of known offsets for the logit of the response.
R number of Monte Carlo simulations.
alpha significance level of the test.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

Value

pvals The estimates of the p-values via simulation.
Coef A table of coefficient estimates.
Joinpoints The estimates of the joinpoint, if it is significant.
wlik The maximum value of the re-weighted log-likelihood.
Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill (rsgill01@louisville.edu).

References

See Also

ljr0, ljr0, ljr0, ljr0

Examples

```r
N=20
m=2
k=0
beta=c(0.1, 0.1, -0.05)
gamma=c(0.1, -0.05, 0.05)
ofst=runif(N, -2.5, -1.5)
x1=round(runif(N, -0.5, 9.5))
x2=round(runif(N, -0.5, 9.5))
X=cbind(x1, x2)
n=rep(1e9, N)
tm=c(1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10)
eta=ofst+beta[1]+gamma[1]*tm
if (m>0)
  for (i in 1:m)
    eta=eta+beta[i+1]*X[,i]
if (k>0)
  for (i in 1:k)
    eta=eta+gamma[i+1]*pmax(tm-tau[i], 0)
y=rbinom(N, size=n, prob=exp(eta)/(1+exp(eta)))
temp.ljr=ljrf2(y, n, tm, X, ofst, R=1000)
```

Description

This function tests the null hypothesis of \(j \) joinpoint(s) versus the alternative of \(k \) joinpoint(s) based on the likelihood ratio test statistic. The p-value is determined by a Monte Carlo method.

Usage

```r
ljrjk(j, k, y, n, tm, X, ofst, R=1000, alpha=.05)
```
Arguments

j, k
pre-specified number of joinpoints in the null and alternative hypotheses (the smaller is used for the null).

y
the vector of Binomial responses.

n
the vector of sizes for the Binomial random variables.

tm
the vector of ordered observation times.

X
a design matrix containing other covariates.

ofst
a vector of known offsets for the logit of the response.

R
number of Monte Carlo simulations.

alpha
significance level of the test.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

Value

pval
The estimate of the p-value via simulation.

Coef
a table of coefficient estimates.

Joinpoint
The estimates of the joinpoint, if it is significant.

wlik
The maximum value of the re-weighted log-likelihood.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill (rsgill01@louisville.edu).

References

See Also

ljrk

Examples

N=20
m=2
k=0
beta=c(0.1,0.1,-0.05)
gamma=c(0.1,-0.05,0.05)
ofst=runif(N,-2.5,-1.5)
x1=round(runif(N,-0.5,9.5))
x2=round(runif(N,-0.5,9.5))
X=cbind(x1,x2)
n=rep(1e9,N)
tm=c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10)
eta=ofst+beta[1]+gamma[1]*tm
if (m>0)
 for (i in 1:m)
 eta=eta+beta[i+1]*X[,i]
if (k>0)
 for (i in 1:k)
 eta=eta+gamma[i+1]*pmax(tm-tau[i],0)
y=rbinom(N,size=n,prob=exp(eta)/(1+exp(eta)))
temp.ljr=ljrjk(0,1,y,n,tm,X,ofst,R=1000)

ljrk

\textit{MLE with k joinpoints}

\textbf{Description}

Determines the maximum likelihood estimates of model coefficients in the logistic joinpoint regression model with k joinpoints.

\textbf{Usage}

\texttt{ljrk(k,y,n,tm,X,ofst)}

\textbf{Arguments}

- \texttt{k} the pre-specified number of joinpoints (with unknown locations).
- \texttt{y} the vector of Binomial responses.
- \texttt{n} the vector of sizes for the Binomial random variables.
- \texttt{tm} the vector of ordered observation times.
- \texttt{X} a design matrix containing other covariates.
- \texttt{ofst} a vector of known offsets for the logit of the response.

\textbf{Details}

The re-weighted loglikelihood is the loglikelihood divided by the largest component of n.

\textbf{Value}

- \texttt{Coef} A table of coefficient estimates.
- \texttt{Joinpoints} The estimates of the joinpoints.
- \texttt{wlik} The maximum value of the re-weighted loglikelihood.

\textbf{Author(s)}

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill (rsgill01@louisville.edu).
References

See Also

ljrb, ljrb

Examples

N=20
m=2
k=1
beta=c(0.1,0.1,-0.05)
gamma=c(0.1,-0.05)
tau=c(5)
ofst=runif(N,-2.5,-1.5)
x1=round(runif(N,-0.5,9.5))
x2=round(runif(N,-0.5,9.5))
X=cbind(x1,x2)
n=rep(1e9,N)
tm=c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10)
eta=ofst+beta[1]+gamma[1]*tm
if (m>0)
 for (i in 1:m)
 eta=eta+beta[i+1]*X[,i]
if (k>0)
 for (i in 1:k)
 eta=eta+gamma[i+1]*pmax(tm-tau[i],0)
y=rbinom(N,size=n,prob=exp(eta)/(1+exp(eta)))
temp.ljr=ljrk(1,y,n,tm,X,ofst)

tljk

Test coefficients conditioned on K=k joinpoint.

Description

This function performs the likelihood ratio tests to find p-values in testing the significance of each of the coefficients as well as the intercept and ordered observation times. The p-values are determined by a Monte Carlo method.

Usage

ljrkk(k,y,n,tm,X,ofst,R=1000)
Arguments

- **k**: the pre-specified number of joinpoints (with unknown locations).
- **y**: the vector of Binomial responses.
- **n**: the vector of sizes for the Binomial random variables.
- **tm**: the vector of ordered observation times.
- **X**: a design matrix containing other covariates.
- **ofst**: a vector of known offsets for the logit of the response.
- **R**: number of Monte Carlo simulations.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of \(n \).

Value

- **pvals**: The estimates of the p-values via simulation.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill (rsgill01@louisville.edu).

References

See Also

- **ljrk**

Examples

```r
N=20
m=2
k=1
beta=c(0.1,0.1,-0.05)
gamma=c(0.1,-0.05)
tau=c(5)
ofst=runif(N,-2.5,-1.5)
x1=round(runif(N,-0.5,9.5))
x2=round(runif(N,-0.5,9.5))
X=cbind(x1,x2)
n=rep(1e9,N)
tm=c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10)
eta=ofst+beta[1]+gamma[1]*tm
if (m>0)
  for (i in 1:m)
    eta=eta+beta[i+1]*X[,i]
```
if (k>0)
 for (i in 1:k)
 eta=eta+gamma[i+1]*pmax(tm-tau[i],0)
y=rbinom(N,size=n,prob=exp(eta)/(1+exp(eta)))
temp.ljr=ljrkk(1,y,n,tm,X,ofst,R=1000)
Index

*Topic nonlinear

1 lj0, 1
lj01, 3
lj02, 4
lj1, 6
lj11, 7
lj12, 8
lj2, 10
lj22, 11
ljrb, 13
ljrb2, 14
ljrf, 16
ljrf2, 17
ljrk, 19
ljrk, 20
ljrk, 22

lj0, 1, 3, 5, 15, 18
lj01, 2, 3
lj02, 4
lj1, 6, 8, 9
lj11, 7
lj12, 8
lj2, 10, 12
lj22, 11
ljrb, 13, 21
ljrb2, 6, 11, 14
ljrf, 16
ljrf2, 17
ljrk, 19
ljrk, 14, 17, 20, 20, 23
ljrk, 22