The evir Package

May 1, 2007

Version 1.5

Date 2007-04-28

Title Extreme Values in R

Author S original (EVIS) by Alexander McNeil <mcneil@math.ethz.ch>, R port by Alec Stephenson <alec_stephenson@hotmail.com>.

Maintainer Alec Stephenson <alec_stephenson@hotmail.com>

Depends stats

Description Functions for extreme value theory, which may be divided into the following groups; exploratory data analysis, block maxima, peaks over thresholds (univariate and bivariate), point processes, gev/gpd distributions.

License GPL (Version 2 or above)

URL http://www.maths.lancs.ac.uk/~stephena/

R topics documented:

<table>
<thead>
<tr>
<th>bmw</th>
<th>danish</th>
<th>decluster</th>
<th>dgev</th>
<th>dgpd</th>
<th>emplot</th>
<th>exindex</th>
<th>findthresh</th>
<th>gev</th>
<th>gpd</th>
<th>gpd.q</th>
<th>gpd.sfall</th>
<th>gpdbiv</th>
<th>gumbel</th>
<th>hill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
bmw

Daily Log Returns on BMW Share Price

Description

These data are the daily log returns on BMW share price from Tuesday 2nd January 1973 until Tuesday 23rd July 1996. The data are contained in a numeric vector. The dates of each observation are contained in a `times` attribute, which is an object of class "POSIXct" (see `DateTimeClasses`). Note that these data form an irregular time series because no trading takes place at the weekend.

Usage

```r
data(bmw)
```

Format

A numeric vector containing 6146 observations, with a `times` attribute which is a POSIXct object of the same length.
danish
Danish Fire Insurance Claims

Description

These data describe large fire insurance claims in Denmark from Thursday 3rd January 1980 until Monday 31st December 1990. The data are contained in a numeric vector. The dates of each observation are contained in a `times` attribute, which is an object of class "POSIXct" (see [DateTimeClasses](#)). They were supplied by Mette Rytgaard of Copenhagen Re. Note that these data form an irregular time series.

Usage

```r
data(danish)
```

Format

A numeric vector containing 2167 observations, with a `times` attribute which is a POSIXct object of the same length.

decluster
Decluster Point Process

Description

Declusters clustered point process data so that Poisson assumption is more tenable over a high threshold.

Usage

```r
decluster(series, run = NA, picture = TRUE)
```

Arguments

- `series`: a numeric vector of threshold exceedances with a `times` attribute which should be a numeric vector containing either the indices or the times/dates of each exceedance (if times/dates, the attribute should be an object of class "POSIXct" or an object that can be converted to that class; see `as.POSIXct`)
- `run`: parameter to be used in the runs method; any two consecutive threshold exceedances separated by more than this number of observations/days are considered to belong to different clusters
- `picture`: whether or not a picture of declustering should be drawn

Value

The declustered object.
References

See Also

`pot`, `exindex`, `as.POSIXct`

Examples

```r
# decluster the 200 exceedances of a particular threshold in
# the negative BMW data
data(bmw)
out <- pot(-bmw, ne = 200)
decluster(out$data, 30)
```

dgev

Generalized Extreme Value Distribution

Description

Cumulative probability, quantiles, density and random generation from the generalized extreme value distribution.

Usage

```r
pgev(q, xi = 1, mu = 0, sigma = 1)
qgev(p, xi = 1, mu = 0, sigma = 1)
dgev(x, xi = 1, mu = 0, sigma = 1)
rgev(n, xi = 1, mu = 0, sigma = 1)
```

Arguments

- `q` vector of quantiles
- `p` vector of probabilities
- `x` vector of values at which to evaluate density
- `n` sample size
- `xi` shape parameter
- `mu` location parameter
- `sigma` scale parameter

Value

Probability (pgev), quantile (qgev), density (dgev) or random sample (rgev) for the GEV distribution with shape xi.
dgpd

Generalized Pareto Distribution

Description

Cumulative probability, quantiles, density and random generation from the generalized Pareto distribution.

Usage

```r
pgpd(q, xi, mu = 0, beta = 1)
qgpd(p, xi, mu = 0, beta = 1)
dgpd(x, xi, mu = 0, beta = 1)
rgpd(n, xi, mu = 0, beta = 1)
```

Arguments

- `q` vector of quantiles.
- `p` vector of probabilities.
- `x` vector of values at which to evaluate density
- `n` sample size
- `xi` shape parameter.
- `mu` location parameter.
- `beta` scale parameter

Value

Probability (`pgpd`), quantile (`qgpd`), density (`dgpd`) or random sample (`rgpd`) for the GPD distribution with shape `xi`.

See Also

`dgeom`, `gpd`
emplot

Plot of Empirical Distribution Function

Description

Plots empirical distribution function of a sample.

Usage

emplot(data, alog = "x", labels = TRUE, ...)

Arguments

data
data vector
alog
whether axes are to be logged: "x" x-axis only; "y" y-axis only; "xy" both axes; "" neither axis.
labels
whether or not axes should be labelled
...
other graphics parameters

Details

This is a simple explanatory function. A straight line on the double log scale indicates Pareto tail behaviour.

See Also

gplot, meplot

Examples

Not run: data(danish)
Not run: emplot(danish)
Danish fire insurance data show Pareto tail behaviour

exindex

Estimate Extremal Index

Description

Plot estimates of extremal index using the blocks method.

Usage

exindex(data, block, start = 5, end = NA, reverse = FALSE, auto.scale = TRUE, labels = TRUE, ...)

Arguments

- **data**: data vector (raw values not block maxima).
- **block**: the block size. A numeric value is interpreted as the number of data values in each successive block. All the data is used, so the last block may not contain block observations. If the data has a `times` attribute containing (in an object of class "POSIXct", or an object that can be converted to that class; see `as.POSIXct`) the times/dates of each observation, then block may instead take the character values "month", "quarter", "semester" or "year".
- **start**: lowest value of K at which to plot a point; K is the number of blocks in which a specified threshold is exceeded.
- **end**: highest value of K at which to plot a point.
- **reverse**: whether plot is to be by increasing threshold (TRUE) or increasing K value (FALSE).
- **auto.scale**: whether or not plot should be automatically scaled; if not, xlim and ylim graphical parameters may be entered.
- **labels**: whether or not axes should be labelled.
- **...**: other graphics parameters.

Value

A table of results is returned invisibly.

References

See Also

`gev`, `hill`, `as.POSIXct`

Examples

```r
## Not run: data(bmw)
## Not run: exindex(bmw, 100)
## Not run: exindex(-bmw, 100)
# calculate extremal index for the right and left tails of the BMW
# log returns
```
findthresh

Find Threshold

Description
Finds a threshold so that a given number of extremes lie above.

Usage
findthresh(data, ne)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>data vector</td>
</tr>
<tr>
<td>ne</td>
<td>vector giving number of extremes above the threshold</td>
</tr>
</tbody>
</table>

Details
When the data are tied a threshold is found so that at least the specified number of extremes lie above.

Value
Vector of suitable thresholds.

See Also
hill, gpd, pot

Examples
Find threshold giving (at least) fifty exceedances for Danish data
data(danish)
findthresh(danish, 50)

gev

Fit Generalized Extreme Value Distribution

Description
Fits generalized extreme value distribution (GEV) to block maxima data.

Usage
gev(data, block = NA, ...)

Arguments

- **data**: data vector. Interpretation depends on value of block: if no block size is specified then data are interpreted as block maxima; if block size is set, then data are interpreted as raw data and block maxima are calculated.

- **block**: the block size. A numeric value is interpreted as the number of data values in each successive block. All the data is used, so the last block may not contain block observations. If the data has a `times` attribute containing (in an object of class "POSIXct", or an object that can be converted to that class; see `as.POSIXct`) the times/dates of each observation, then `block` may instead take the character values "month", "quarter", "semester" or "year".

... arguments passed to `optim`

Value

An object of class `gev` describing the fit and including parameter estimates and standard errors. Fitting is carried out using maximum likelihood.

See Also

`plot.gev`, `gumbel`, `optim`, `as.POSIXct`

Examples

```r
# Fit GEV to monthly maxima
data(bmw)
out <- gev(bmw, "month")

# Fit GEV to maxima of blocks of 100 observations
out <- gev(bmw, 100)

# Fit GEV to the data in nidd.annual, the annual maximum water levels of the River Nidd, using the "BFGS" optimization method
data(nidd.annual)
out <- gev(nidd.annual, method = "BFGS", control = list(maxit = 500))
```
Arguments

data data vector
threshold a threshold value (either this or nextremes must be given but not both)
nextremes the number of upper extremes to be used (either this or threshold must be
given but not both)
method whether parameters should be estimated by the maximum likelihood method
 "ml" or the probability-weighted moments method "pwm"
information whether standard errors should be calculated with "observed" or "expected"
 information. This only applies to the maximum likelihood method; for the
 probability-weighted moments method "expected" information is used if
 possible
... arguments passed to optim

Details

The function uses the general purpose optimization function optim when method = "ml" is
chosen.

Value

An object of class "gpd" describing the fit and including parameter estimates and standard errors.

References

Parameter and quantile estimation for the generalized Pareto distribution, JRM Hosking and JR

See Also

plot.gpd, shape, quant, optim

Examples

data(danish)
out <- gpd(danish, 10)
Fits GPD to excess losses over 10 for the Danish
fire insurance data
Description

Calculates quantile estimates and confidence intervals for high quantiles above the threshold in a GPD analysis, and adds a graphical representation to an existing plot.

Usage

```
gpd.q(x, pp, ci.type = c("likelihood", "wald"), ci.p = 0.95, like.num = 50)
```

Arguments

- `x`: a list object returned by `plot.gpd` or `tailplot`
- `pp`: the desired probability for quantile estimate (e.g. 0.99 for the 99th percentile)
- `ci.type`: method for calculating a confidence interval: "likelihood" or "wald"
- `ci.p`: probability for confidence interval (must be less than 0.999)
- `like.num`: number of times to evaluate profile likelihood

Details

The GPD approximation in the tail is used to estimate quantile. The "wald" method uses the observed Fisher information matrix to calculate confidence interval. The "likelihood" method reparametrizes the likelihood in terms of the unknown quantile and uses profile likelihood arguments to construct a confidence interval.

See Also

`gpd.plot`, `gpd.q`, `gpd.sfall`, `tailplot`

Examples

```r
## Not run: data(danish)
## Not run: out <- gpd(danish, 10)
## Not run: tp <- tailplot(out)
## Not run: gpd.q(tp, 0.999)
# Estimates 99.9th percentile of Danish fire losses
```
gpd.sfall
Add Expected Shortfall Estimates to a GPD Plot

Description
Calculates expected shortfall (tail conditional expectation) estimates and confidence intervals for high quantiles above the threshold in a GPD analysis, and adds a graphical representation to an existing plot.

Usage
```r
gpd.sfall(x, pp, ci.p = 0.95, like.num = 50)
```

Arguments
- `x`: a list object returned by `plot.gpd` or `tailplot`
- `pp`: the desired probability for expected shortfall estimate (e.g. 0.99 for the 99th percentile)
- `ci.p`: probability for confidence interval (must be less than 0.999)
- `like.num`: number of times to evaluate profile likelihood

Details
Expected shortfall is the expected size of the loss, given that a particular quantile of the loss distribution is exceeded. The GPD approximation in the tail is used to estimate expected shortfall. The likelihood is reparametrised in terms of the unknown expected shortfall and profile likelihood arguments are used to construct a confidence interval.

See Also
- `gpd`, `plot.gpd`, `tailplot`, `gpd.q`

Examples
```r
## Not run: data(danish)
## Not run: out <- gpd(danish, 10)
## Not run: tp <- tailplot(out)
## Not run: gpd.q(tp, 0.999)
# Estimates 99.9th percentile of Danish fire losses
## Not run: gpd.sfall(tp, 0.999)
# Estimates associated expected shortfall for Danish fire losses
```
\textbf{Description}

Returns an object of class "\texttt{gpdbiv}" representing the fit of a bivariate POT (peaks over thresholds) model for joint excesses over thresholds.

\textbf{Usage}

\begin{verbatim}
gpdbiv(data1 = NA, data2 = NA, u1 = NA, u2 = NA, ne1 = NA, ne2 = NA, global = FALSE, method = "BFGS", ...)
\end{verbatim}

\textbf{Arguments}

- \texttt{data1}: first data vector
- \texttt{data2}: second data vector
- \texttt{u1}: threshold for \texttt{data1} (either this or \texttt{ne1} must be given but not both)
- \texttt{u2}: threshold for \texttt{data2} (either this or \texttt{ne2} must be given but not both)
- \texttt{ne1}: number of upper extremes to be used for \texttt{data1} (either this or \texttt{u1} must be given but not both)
- \texttt{ne2}: number of upper extremes to be used for \texttt{data2} (either this or \texttt{u2} must be given but not both)
- \texttt{global}: should a global maximisation of the likelihood with respect to marginal and dependence parameters be undertaken. The default alternative is a two-stage local fit where first the marginal parameters are estimated and then the dependence parameter. This is much faster than a global fit.
- \texttt{method}: the optimization method (see \texttt{optim}). The argument has been created (as distinct from ...) in order to make the "BFGS" method the default, as the default used by \texttt{optim} is not recommended for the one-dimensional optimizations that occur when \texttt{global} = \texttt{FALSE}.
- ...: other arguments passed to \texttt{optim}

\textbf{Details}

This function implements a model suggested by Richard Smith (see references below). The marginal excess distributions are GPD distributions, as suggested by univariate EVT and implemented in \texttt{gpd}. The dependence specification is known as the logistic or Gumbel dependence structure, but it would be easy to program alternatives.

\textbf{Value}

An object of class "\texttt{gpdbiv}" representing the fit and including parameter estimates and standard errors.
gumbel

References

See Also

`gpd, plot.gpdbiv, interpret.gpdbiv`

Examples

```r
data(bmw); data(siemens)
out <- gumbel(-bmw, -siemens, ne1 = 100, ne2 = 100)
interpret.gpdbiv(out, 0.05, 0.05)
## Not run: plot(out)
```

gumbel

Fit Gumbel Distribution

Description

Fits gumbel distribution (GEV with \(\xi = 0 \)) to block maxima data.

Usage

```r
gumbel(data, block = NA, ...)
```

Arguments

- `data` data vector. Interpretation depends on value of block: if no block size is specified then data are interpreted as block maxima; if block size is set, then data are interpreted as raw data and block maxima are calculated.
- `block` the block size. A numeric value is interpreted as the number of data values in each successive block. All the data is used, so the last block may not contain block observations. If the *data* has a `times` attribute containing (in an object of class "POSIXct", or an object that can be converted to that class; see `as.POSIXct`) the times/dates of each observation, then `block` may instead take the character values "month", "quarter", "semester" or "year".
- `...` arguments passed to `optim`

Details

This function is primarily intended for comparison with GEV for assessing the need for a heavy-tailed Frechet (or short-tailed Weibull) to model block maxima.
Value

An object of class "gev" describing the fit and including parameter estimates and standard errors. Fitting is carried out using maximum likelihood.

See Also

plot.gev, gev, optim, as.POSIXct

Examples

Fit Gumbel to maxima of blocks of 100 observations
data(bmw)
out <- gumbel(bmw, 100)
Fit Gumbel to the data in nidd.annual, the annual maximum water
levels of the River Nidd, using the "BFGS" optimization method
data(nidd.annual)
out <- gumbel(nidd.annual, method = "BFGS", control = list(maxit = 500))

hill

Create Hill Plot

Description

Plot the Hill estimate of the tail index of heavy-tailed data, or of an associated quantile estimate.

Usage

hill(data, option = c("alpha","xi","quantile"), start = 15,
end = NA, reverse = FALSE, p = NA, ci = 0.95,
auto.scale = TRUE, labels = TRUE, ...)

Arguments

data data vector
option whether "alpha", "xi" (1/alpha) or "quantile" (a quantile estimate) should be plotted
start lowest number of order statistics at which to plot a point
end highest number of order statistics at which to plot a point
reverse whether plot is to be by increasing threshold (TRUE) or increasing number of order statistics (FALSE)
p probability required when option "quantile" is chosen
ri probability for asymptotic confidence band; for no confidence band set ci to zero
auto.scale whether or not plot should be automatically scaled; if not, xlim and ylim graphical parameters may be entered
labels whether or not axes should be labelled
... other graphics parameters
Details

This plot is usually calculated from the alpha perspective. For a generalized Pareto analysis of heavy-tailed data using the \texttt{gpd} function, it helps to plot the Hill estimates for x_i.

See Also

\texttt{shape, quant}

Examples

```r
## Not run: data(danish)
## Not run: hill(danish)
# Hill plot of heavy-tailed Danish fire insurance data
## Not run: hill(danish, option = "quantile", end = 500, p = 0.999)
# Hill plot of estimated 0.999 quantile of Danish fire insurance data
```

interpret.gpdbiv
Interpret Results of Bivariate GPD Fit

Description

Interprets the results of a bivariate GPD model fitted using the bivariate POT method.

Usage

```r
interpret.gpdbiv(out, x, y)
```

Arguments

- `out`: a \texttt{gpdbiv} object
- `x`: a scalar value greater than first threshold
- `y`: a scalar value greater than second threshold

Details

First marginal probabilities of exceeding the points x and y are calculated, and then joint and conditional probabilities.

Value

A vector of probabilities is invisibly returned, in printed order.

Side Effects

A simple interpretation of the fit in terms of exceedance probabilities for the point (x,y) is printed.
See Also

```
gpdbiv, plot.gpdbiv
```

Examples

```
data(bmw) ; data(siemens)
out <- gpdbiv(-bmw, -siemens, ne1 = 100, ne2 = 100)
interpret.gpdbiv(out, 0.05, 0.05)
# probabilities of 5% falls in BMW and Siemens stock prices
```

meplot

Sample Mean Excess Plot

Description

Plots sample mean excesses over increasing thresholds.

Usage

```
meplot(data, omit = 3, labels = TRUE, ...)
```

Arguments

- `data` : data vector
- `omit` : number of upper plotting points to be omitted
- `labels` : whether or not axes are to be labelled
- `...` : other graphics parameters

Details

An upward trend in plot shows heavy-tailed behaviour. In particular, a straight line with positive gradient above some threshold is a sign of Pareto behaviour in tail. A downward trend shows thin-tailed behaviour whereas a line with zero gradient shows an exponential tail. Because upper plotting points are the average of a handful of extreme excesses, these may be omitted for a prettier plot.

See Also

```
gpd, qplot
```

Examples

```
## Not run: data(danish)
## Not run: meplot(danish)
# Sample mean excess plot of heavy-tailed Danish fire insurance data
```
The River Nidd Data

Description

These data represent annual maximal levels of the River Nidd in Yorkshire. These data are suitable for analysis with `gev`.

Usage

data(nidd.annual)

Format

A numeric vector containing 35 observations.

The River Nidd Data

Description

These data represent high river levels of the River Nidd in Yorkshire above a threshold value of 65. These data are suitable for analysis with `gpd`.

Usage

data(nidd.thresh)

Format

A numeric vector containing 154 observations.

Plot Fitted GEV Model

Description

The plot method `plot.gev` provides two different residual plots for assessing fitted GEV model. The user selects the plot type from a menu. See the examples below.

Usage

```r
## S3 method for class 'gev':
plot(x, ...)
```
Arguments

- `x`: a `gev` object
- `...`: other graphics parameters

Details

Data are converted to unit exponentially distributed residuals under null hypothesis that GEV fits. Two diagnostics for iid exponential data are offered.

See Also

`gev`, `qplot`

Examples

data(bmw)
out <- gev(bmw, 100)
Not run: plot(out)

Not run: Make a plot selection (or 0 to exit):
Not run: 1: plot: Scatterplot of Residuals
Not run: 2: plot: QQplot of Residuals
Value

If plot 1 or 2 is selected as the final plot, a list object containing details of the plot is returned invisibly. This object should be used as the first argument of `gpd.q` or `gpd.sfall` to add quantile estimates or expected shortfall estimates to the plot.

See Also

`gpd, quant, shape`

Examples

data(danish)
out <- gpd(danish, 10)
Not run: plot(out)

Not run: Make a plot selection (or 0 to exit):
Not run: 1: plot: Excess Distribution
Not run: 2: plot: Tail of Underlying Distribution
Not run: 3: plot: Scatterplot of Residuals
Not run: 4: plot: QQplot of Residuals

Description

Provides a number of plots summarising a bivariate GPD model fitted using the bivariate POT method. See the examples below.

Usage

```r
## S3 method for class 'gpdbiv':
plot(x, extend = 1.1, n.contours = 15, ...)
```

Arguments

- `x`: a `gpdbiv` object
- `extend`: optional argument expressing how far x-axis should extend as a multiple of the largest data value.
- `n.contours`: number of contours in bivariate contour plots
- `...`: other graphics parameters

Details

Option 1 plots the threshold exceedance data; option 2 plots contours of the fitted bivariate distribution function in the joint upper tail (above both thresholds); option 3 plots corresponding contours of the fitted joint survival function; plots 4 and 5 show the fitted tails of the marginal distributions.
plot.potd

See Also

 gpd, gpdbiv, tailplot, interpret.gpdbiv, plot.gpd

Examples

data(bmw) ; data(siemens)
out <- gpdbiv(-bmw, -siemens, ne1 = 100, ne2 = 100)
Not run: plot(out)

Not run: Make a plot selection (or 0 to exit):
Not run: 1: plot: Exceedance data
Not run: 2: plot: Contours of Bivariate Distribution Function
Not run: 3: plot: Contours of Bivariate Survival Function
Not run: 4: plot: Tail of Marginal 1
Not run: 5: plot: Tail of Marginal 2

plot.potd

Plot Fitted POT Model

Description

The plot method plot.potd provides seven different plots for assessing fitted POT model. The user selects the plot type from a menu. See the examples below.

Usage

 # S3 method for class 'potd':
 plot(x, ...)

Arguments

 x an object returned by the function pot
 ... other graphics parameters

Details

Plot 1 displays the exceedance process of the chosen threshold. Plots 2-4 assess the Poisson nature of the exceedance process by looking at the scaled gaps between exceedances, which should be iid unit exponentially distributed. Plots 5-6 assess the GPD nature of the excesses by looking at suitably defined residuals, which should again be iid unit exponentially distributed. Option 8 allows the user to call GPD plotting functions.

Value

If plot 1 or 2 from the GPD plots is selected as the final plot (i.e. option 8 is selected, followed by option 1 or 2), a list object containing details of the plot is returned invisibly. This object should be used as the first argument of gpd.q or gpd.sfall to add quantile estimates or expected shortfall estimates to the plot.
See Also
gpd, pot.plot.gpd

Examples
data(danish)
out <- pot(danish, 10)
Not run: plot(out)

Not run: Make a plot selection (or 0 to exit):
Not run: 1: plot: Point Process of Exceedances
Not run: 2: plot: Scatterplot of Gaps
Not run: 3: plot: Qplot of Gaps
Not run: 4: plot: ACF of Gaps
Not run: 5: plot: Scatterplot of Residuals
Not run: 6: plot: Qplot of Residuals
Not run: 7: plot: ACF of Residuals
Not run: 8: plot: Go to GPD Plots

pot

Peaks Over Thresholds Model

Description
Fits a Poisson point process to the data, an approach sometimes known as peaks over thresholds (POT), and returns an object of class "potd".

Usage
pot(data, threshold = NA, nextremes = NA, run = NA, picture = TRUE, ...)

Arguments
data numeric vector of data, which may have a times attribute containing (in an object of class "POSIXct"), or an object that can be converted to that class; see as.POSIXct) the times/dates of each observation. If no times attribute exists, the data are assumed to be equally spaced.
threshold a threshold value (either this or nextremes must be given but not both)
nextremes the number of upper extremes to be used (either this or threshold must be given but not both)
run if the data are to be declustered the run length parameter for the runs method (see decluster) should be entered here
picture whether or not a picture should be drawn if declustering is performed
... arguments passed to optim
qplot

Details

Uses `optim` for point process likelihood maximization.

Value

An object of class "potd" describing the fit and including parameter estimates and standard errors.

See Also

`gpd, plot.potd, plot.gpd, decluster, optim, as.POSIXct`

Examples

```r
data(danish)
out <- pot(danish, 10)
# Fits POT model to Danish fire insurance losses
```

qplot

Exploratory QQplot for Extreme Value Analysis

Description

Creates a QQplot for threshold data against the exponential distribution or the generalized Pareto distribution.

Usage

```r
qplot(data, xi = 0, trim = NA, threshold = NA, line = TRUE, labels = TRUE, ...)
```

Arguments

- `data` data vector
- `xi` the xi value of a generalized Pareto distribution
- `trim` value at which data are to be right-truncated
- `threshold` value at which data are to be left-truncated
- `line` whether or not a straight line is to be added
- `labels` whether or not the axes are to be labelled
- `...` other graphics parameters

Details

If `xi` is zero the reference distribution is the exponential; if `xi` is non-zero the reference distribution is the generalized Pareto with that value of `xi`. In the case of the exponential, the plot is interpreted as follows. Concave departures from a straight line are a sign of heavy-tailed behaviour. Convex departures show thin-tailed behaviour.
See Also
gpd, meplot

Examples

```r
## Not run: data(danish)
## Not run: qplot(danish)
# QQplot of heavy-tailed Danish fire insurance data
```

quant
Plot of GPD Tail Estimate of a High Quantile

Description

Creates a plot showing how the estimate of a high quantile in the tail of a dataset based on the GPD approximation varies with threshold or number of extremes.

Usage

```r
quant(data, p = 0.99, models = 30, start = 15, end = 500, reverse = TRUE, ci = 0.95, auto.scale = TRUE, labels = TRUE, ...)
```

Arguments

- `data` numeric vector of data
- `p` desired probability for quantile estimate (e.g. 0.99 gives 99th percentile)
- `models` number of consecutive gpd models to be fitted
- `start` lowest number of exceedances to be considered
- `end` maximum number of exceedances to be considered
- `reverse` should plot be by increasing threshold (TRUE) or number of extremes (FALSE)
- `ci` probability for asymptotic confidence band; for no confidence band set to zero
- `auto.scale` whether or not plot should be automatically scaled; if not, xlim and ylim graphical parameters may be entered
- `labels` whether or not axes should be labelled
- `...` other graphics parameters

Details

For every model gpd is called. Evaluation may be slow. Confidence intervals by the Wald method (which is fastest).

Value

A table of results is returned invisibly.
records

See Also
gpd, plot.gpd, gpd.q, shape

Examples

Not run: data(danish)
Not run: quant(danish, 0.999)
Estimates of the 99.9th percentile of the Danish losses using
the GPD model with various thresholds

data(danish)
Record fire insurance losses in Denmark

Description

Creates a data frame showing the development of records in a dataset and calculating the expected behaviour for iid data.

Usage

records(data, do.plot = TRUE, conf.level = 0.95, ...)

Arguments

data data vector
do.plot whether a plot of record development should be created
conf.level confidence level for record development plot
... graphics parameters

Details

Records are counted and the observations at which they occur recorded. This is compared with the expected behaviour for iid data.

Value

A data frame.

Examples

Not run: data(danish)
Not run: records(danish)
Record fire insurance losses in Denmark
riskmeasures

Calculates Quantiles and Expected Shortfalls

Description

Makes a rapid calculation of point estimates of prescribed quantiles and expected shortfalls using the output of the function `gpd`.

Usage

```r
riskmeasures(x, p)
```

Arguments

- `x`: results of a `gpd` fit
- `p`: a vector of probability levels

Details

This function simply calculates point estimates and (at present) makes no attempt to calculate confidence intervals for the risk measures. If confidence levels are required use `gpd.q` and `gpd.sfall` which interact with graphs of the tail of a loss distribution and are much slower.

Value

A matrix with three columns: probability level, quantile estimate, shortfall estimate.

See Also

`gpd`, `tailplot`, `gpd.q`, `gpd.sfall`

Examples

```r
data(danish)
out <- gpd(danish, 10)
riskmeasures(out, c(0.999, 0.9999))
# gives estimates of 0.999 and 0.9999 quantiles of Danish loss
# distribution as well as the associated expected shortfall estimates
```
Calculate Return Levels Based on GEV Fit

Description
Calculates the k-block return level and 95% confidence interval based on a GEV model for block maxima, where k is specified by the user. The k-block return level is that level exceeded once every k blocks, on average.

Usage
rlevel.gev(out, k.blocks = 20, add = FALSE, ...)

Arguments
- **out**: an object returned by the function `gev`
- **k.blocks**: specifies the particular return level to be estimated; default set arbitrarily to 20
- **add**: whether the return level should be added graphically to a time series plot; if FALSE a graph of the profile likelihood curve showing the return level and its confidence interval is produced
- **...**: other graphics parameters

Details
The GEV likelihood is reparameterized in terms of the unknown return level and profile likelihood arguments are used to construct a confidence interval.

Value
Vector containing lower 95% bound of confidence interval, estimated return level and upper 95% bound.

See Also
- `gev`, `plot.gev`

Examples
```r
data(bmw)
out <- gev(bmw, "month")
# Fit GEV to monthly maxima of daily returns on BMW share price
## Not run: rlevel.gev(out, 40)
# Calculate the 40 month return level
```
shape

Plot for GPD Shape Parameter

Description

Creates a plot showing how the estimate of shape varies with threshold or number of extremes.

Usage

shape(data, models = 30, start = 15, end = 500, reverse = TRUE, ci = 0.95, auto.scale = TRUE, labels = TRUE, ...)

Arguments

data
numeric vector of data
models
number of consecutive gpd models to be fitted
start
lowest number of exceedances to be considered
end
maximum number of exceedances to be considered
reverse
should plot be by increasing threshold (TRUE) or number of extremes (FALSE)
ci
probability for asymptotic confidence band; for no confidence band set to zero
auto.scale
whether or not plot should be automatically scaled; if not, xlim and ylim graphical parameters may be entered
labels
whether or not axes should be labelled
...
other graphics parameters

Details

For every model gpd is called. Evaluation may be slow.

Value

A table of results is returned invisibly.

See Also

gpd, plot.gpd, hill

Examples

```r
## Not run: data(danish)
## Not run: shape(danish)
# Shape plot of heavy-tailed Danish fire insurance data
```
siemens

Daily Log Returns on Siemens Share Price

Description

These data are the daily log returns on Siemens share price from Tuesday 2nd January 1973 until Tuesday 23rd July 1996. The data are contained in a numeric vector. The dates of each observation are contained in a `times` attribute, which is an object of class "POSIXct" (see *DateTimeClasses*). Note that these data form an irregular time series because no trading takes place at the weekend.

Usage

`data(siemens)`

Format

A numeric vector containing 6146 observations, with a `times` attribute which is a POSIXct object of the same length.

sp.raw

SP Data to June 1993

Description

The daily closing values of the S&P index from Monday 4th January 1960 until Friday 11th June 1993. The data are contained in a numeric vector. The dates of each observation are contained in a `times` attribute, which is an object of class "POSIXct" (see *DateTimeClasses*).

Usage

`data(sp.raw)`

Format

A numeric vector containing 8415 observations, with a `times` attribute which is a POSIXct object of the same length.
spto87

SP Return Data to October 1987

Description

The daily log returns on the S&P index value from Tuesday 5th January 1960 until Friday 16 October 1987. The data are contained in a numeric vector. The dates of each observation are contained in a `times` attribute, which is an object of class "POSIXct" (see `DateTimeClasses`).

Usage

data(spto87)

Format

A numeric vector containing 6985 observations, with a `times` attribute which is a POSIXct object of the same length.

tailplot

Plot Tail Estimate From GPD Model

Description

Interacts with the output of `gpd` to produce a plot of the tail of the underlying distribution of the data. This is one of the options of `plot.gpd`, but `tailplot` enables the user to bypass the menu of the former.

Usage

tailplot(x, optlog = NA, extend = 1.5, labels = TRUE, ...)

Arguments

- `x` a gpd object
- `optlog` optional argument giving a particular choice of logarithmic axes: "x" x-axis only; "y" y-axis only; "xy" both axes; "" neither axis.
- `extend` optional argument expressing how far x-axis should extend as a multiple of the largest data value. This argument must take values greater than 1 and is useful for showing estimated quantiles beyond data.
- `labels` optional argument specifying whether or not axes should be labelled
- `...` other graphics parameters
Value

A list object containing details of the plot is returned invisibly. This object should be used as the first argument of `gpd.q` or `gpd.sf` to add quantile estimates or expected shortfall estimates to the plot.

See Also

`gpd`, `plot.gpd`, `shape`, `quant`

Examples

```r
data(danish)
out <- gpd(danish, 10)
## Not run: tailplot(out)
```
Index

+Topic datasets
- bmw, 1
- danish, 2
- nidd.annual, 17
- nidd.thresh, 17
- siemens, 28
- sp.raw, 28
- spto87, 29

+Topic distribution
- dgev, 3
- dgpd, 4

+Topic hplot
- emplot, 5
- exindex, 5
- hill, 14
- meplot, 16
- plot.gev, 17
- plot.gpd, 18
- plot.gpdbiv, 19
- plot.potd, 20
- qplot, 22
- quant, 23
- records, 24
- shape, 27
- tailplot, 29

+Topic htest
- interpret.gpdbiv, 15
- riskmeasures, 25
- rlevel.gev, 26

+Topic iplot
- gpd.q, 10
- gpd.sfall, 11

+Topic manip
- decluster, 2
- findthresh, 7

+Topic models
- gev, 7
- gpd, 8
- gpdbiv, 12

- gumbel, 13
- pot, 21

- as.POSIXct, 2, 3, 6, 8, 13, 14, 21, 22
- bmw, 1
- danish, 2
- DateTimeClasses, 1, 2, 28, 29
- decluster, 2, 21, 22
- dgev, 3, 4
- dgpd, 4, 4

- emplot, 5
- exindex, 3, 5

- findthresh, 7

- gev, 4, 6, 7, 14, 18, 26
- gpd, 4, 7, 8, 10, 11, 13, 16, 19–25, 27, 30
- gpd.q, 10, 11, 24, 25
- gpd.sfall, 10, 11, 25
- gpdbiv, 12, 16, 20
- gumbel, 8, 13

- hill, 6, 7, 14, 27

- interpret.gpdbiv, 13, 15, 20

- meplot, 5, 16, 23

- nidd.annual, 17
- nidd.thresh, 17

- optim, 8, 9, 14, 22

- pgev(dgev), 3
- pgpd(dgpd), 4

- plot.gev, 8, 14, 17, 26
- plot.gpd, 9–11, 18, 20–22, 40, 27, 30
- plot.gpdbiv, 13, 16, 19
- plot.potd, 20, 22
INDEX

pot, 3, 7, 21, 21
qgev (dgev), 3
qgpd (dgpd), 4
qplot, 5, 16, 18, 22
quant, 9, 15, 19, 23, 30
records, 24
rgev (dgev), 3
rgpd (dgpd), 4
riskmeasures, 25
rlevel.gev, 26
shape, 9, 15, 19, 24, 27, 30
siemens, 28
sp.raw, 28
spto87, 29
tailplot, 10, 11, 20, 25, 29