The elasticnet Package

October 21, 2007

Version 1.0-4

Date 2007-10-21

Title Elastic Net Regularization and Variable Selection

Author Hui Zou <hzou@stanford.edu> and Trevor Hastie <hastie@stanford.edu>

Maintainer ORPHANED

Depends R, lars

Description

License GPL (>= 2)

R topics documented:

arrayspc .. 2
cv.enet .. 3
diabetes .. 4
elasticnet-internal .. 5
enet ... 5
pitprops .. 6
plot.enet ... 7
predict.enet .. 8
print.arrayspe .. 9
print.enet .. 10
print.spca .. 11
spca ... 11

Index 14
arrayspc

Sparse PCs of Microarrays

Description

Sparse PC by iterative SVD and soft-thresholding

Usage

arrayspc(x,K=1,para,use.corr=FALSE, max.iter=100,trace=FALSE,eps=1e-3)

Arguments

x The microarray matrix.
K Number of components. Default is 1.
para The thresholding parameters. A vector of length K.
use.corr Perform PCA on the correlation matrix? This option is only effective when the
 argument type is set "data".
max.iter Maximum number of iterations.
trace If TRUE, prints out its progress.
eps Convergence criterion.

Details

The function is equivalent to a special case of spca() with the quadratic penalty=infinity. It is
specifically designed for the case p>n, like microarrays.

Value

A "arrayspc" object is returned.

Author(s)

Hui Zou, Trevor Hastie and Robert Tibshirani

References

report, Statistics Dept. Stanford University

See Also

spca, princomp
cv.enet

Computes K-fold cross-validated error curve for elastic net

Description

Computes the K-fold cross-validated mean squared prediction error for elastic net.

Usage

\texttt{cv.enet(x, y, K = 10, lambda, s, mode, trace = FALSE, plot.it = TRUE, se = TRUE, ...)}

Arguments

\textbf{x} \hspace{2cm} \text{Input to lars}
\textbf{y} \hspace{2cm} \text{Input to lars}
\textbf{K} \hspace{2cm} \text{Number of folds}
\textbf{lambda} \hspace{2cm} \text{Quadratic penalty parameter}
\textbf{s} \hspace{2cm} \text{Abscissa values at which CV curve should be computed. A value, or vector of values, indexing the path. Its values depends on the mode= argument}
\textbf{mode} \hspace{2cm} \text{Mode="step" means the s= argument indexes the LARS-EN step number. If mode="fraction", then s should be a number between 0 and 1, and it refers to the ratio of the L1 norm of the coefficient vector, relative to the norm at the full LS solution. Mode="norm" means s refers to the L1 norm of the coefficient vector. Abbreviations allowed. If mode="penalty", then s should be the 1-norm penalty parameter.}
\textbf{trace} \hspace{2cm} \text{Show computations?}
\textbf{plot.it} \hspace{2cm} \text{Plot it?}
\textbf{se} \hspace{2cm} \text{Include standard error bands?}
\textbf{...} \hspace{2cm} \text{Additional arguments to enet}

Value

Invisibly returns a list with components (which can be plotted using \texttt{plotCVLars})

\textbf{fraction} \hspace{2cm} \text{Values of s}
\textbf{cv} \hspace{2cm} \text{The CV curve at each value of fraction}
\textbf{cv.error} \hspace{2cm} \text{The standard error of the CV curve}

Author(s)

Hui Zou and Trevor Hastie
References

Examples

data(diabetes)
attach(diabetes)
use the L1 fraction norm as the tuning parameter
cv.enet(x2, y, lambda=0.05, s=seq(0,1,length=100), mode="fraction", trace=TRUE, max.steps=80)
use the number of steps as the tuning parameter
cv.enet(x2, y, lambda=0.05, s=1:50, mode="step")
detach(diabetes)

diabetes

Blood and other measurements in diabetics

Description

The diabetes data frame has 442 rows and 3 columns. These are the data used in the Efron et al "Least Angle Regression" paper.

Format

This data frame contains the following columns:

- **x** a matrix with 10 columns
- **y** a numeric vector
- **x2** a matrix with 64 columns

Details

The x matrix has been standardized to have unit L2 norm in each column and zero mean. The matrix x2 consists of x plus certain interactions.

Source

References

Efron, Hastie, Johnstone and Tibshirani (2003) "Least Angle Regression" (with discussion) *Annals of Statistics*
Internal elasticnet functions

Usage

- `updateRR(xnew, R = NULL, xold, lambda, eps = .Machine$double.eps)`
- `solvebeta(x, y, paras, max.steps, sparse=c("penalty","varnum"), eps = .Machine$double.eps)`
- `rootmatrix(x)`
- `soft(a,para)`

Details

These are not to be called by the user.

Author(s)

Hui Zou and Trevor Hastie

Enet

Fits Elastic Net regression models

Description

Starting from zero, the LARS-EN algorithm provides the entire sequence of coefficients and fits.

Usage

- `enet(x, y, lambda, max.steps, normalize=TRUE, intercept=TRUE, trace = FALSE, eps = .Machine$double.eps)`

Arguments

- `x` matrix of predictors
- `y` response
- `lambda` Quadratic penalty parameter. lambda=0 performs the Lasso fit.
- `max.steps` Limit the number of steps taken; the default is $50 \times \min(m, n-1)$, with m the number of variables, and n the number of samples. One can use this option to perform early stopping.
- `trace` If TRUE, prints out its progress
- `normalize` Standardize the predictors?
- `intercept` Center the predictors?
- `eps` An effective zero
Details

The Elastic Net methodology is described in detail in Zou and Hastie (2004). The LARS-EN algorithm computes the complete elastic net solution simultaneously for ALL values of the shrinkage parameter in the same computational cost as a least squares fit. The structure of enet() is based on lars() coded by Efron and Hastie. Some internal functions from the lars package are called. The user should install lars before using elasticnet functions.

Value

An "enet" object is returned, for which print, plot and predict methods exist.

Author(s)

Hui Zou and Trevor Hastie

References

See Also

print, plot, and predict methods for enet

Examples

data(diabetes)
attach(diabetes)
##fit the lasso model (treated as a special case of the elastic net)
object1 <- enet(x,y,lambd=0)
plot(object1)
##fit the elastic net model with lambd=1.
object2 <- enet(x,y,lambd=1)
plot(object2)
##early stopping after 50 LARS-EN steps
object4 <- enet(x2,y,lambd=0.5,max.steps=50)
plot(object4)
detach(diabetes)

pitprops

Pitprops correlation data

Description

The pitprops data is a correlation matrix that was calculated from 180 observations. There are 13 explanatory variables.
Usage

data(pitprops)

Details

Jeffers (1967) tried to interpret the first six PCs. This is a classical example showing the difficulty of interpreting principal components.

References

plot.enet Plot method for enet objects

Description

Produce a plot of an enet fit. The default is a complete coefficient path.

Usage

plot.enet(x, xvar = c("fraction", "penalty", "L1norm", "step"),
 use.color = FALSE, ...)

Arguments

 x enet object
 xvar The type of x variable against which to plot. xvar=fraction plots against
 the fraction of the L1 norm of the coefficient vector (default). xvar=penalty
 plots against the 1-norm penalty parameter. xvar=L1norm plots against the
 L1 norm of the coefficient vector. xvar=step plots against the LARS-EN step
 number.
 use.color a colorful plot?
 ... Additional arguments for generic plot.

Value

 NULL

Author(s)

 Hui Zou and Trevor Hastie

References

 Zou and Hastie (2005) "Regularization and Variable Selection via the Elastic Net" Journal of the
Examples

data(diabetes)
attach(diabetes)
object <- enet(x,y,lambda=1)
par(mfrow=c(2,2))
plot(object)
plot(object,xvar="step")
detach(diabetes)

predict.enet

Make predictions or extract coefficients from a fitted elastic net model

Description

While enet() produces the entire path of solutions, predict.enet allows one to extract a prediction at a particular point along the path.

Usage

predict.enet(object, newx, s, type = c("fit", "coefficients"), mode = c("step","fraction", "norm", "penalty"),naive=FALSE, ...)

Arguments

object
A fitted enet object

newx
If type="fit", then newx should be the x values at which the fit is required. If type="coefficients", then newx can be omitted.

s
a value, or vector of values, indexing the path. Its values depends on the mode= argument. By default (mode="step").

type
If type="fit", predict returns the fitted values. If type="coefficients", predict returns the coefficients. Abbreviations allowed.

mode
Mode="step" means the s= argument indexes the LARS-EN step number, and the coefficients will be returned corresponding to the values corresponding to step s. If mode="fraction", then s should be a number between 0 and 1, and it refers to the ratio of the L1 norm of the coefficient vector, relative to the norm at the full LS solution. Mode="norm" means s refers to the L1 norm of the coefficient vector. Abbreviations allowed. If mode="norm", then s should be the L1 norm of the coefficient vector. If mode="penalty", then s should be the 1-norm penalty parameter.

naive
IF naive is True, then the naive elastic net fit is returned.

Details

Starting from zero, the LARS-EN algorithm provides the entire sequence of coefficients and fits.
Value

Either a vector/matrix of fitted values, or a vector/matrix of coefficients.

Author(s)

Hui Zou and Trevor Hastie

References

See Also

print, plot, enet

Examples

data(diabetes)
attach(diabetes)
object <- enet(x,y,lambda=0.1)
make predictions at the values in x, at each of the ### steps produced in object
fits <- predict.enet(object, x, type="fit")
extract the coefficient vector with L1 norm=2000
coef2000 <- predict(object, s=2000, type="coef", mode="norm")
extract the coefficient vector with L1 norm fraction=0.45
coef.45 <- predict(object, s=0.45, type="coef", mode="fraction")
detach(diabetes)

print.arrayspc

Print method for arrayspc objects

Description

Print out an arrayspc fit.

Usage

print.arrayspc(x, ...)

Arguments

x
arrayspc object

... Additonal arguments for generic print.

Value

NULL
Author(s)

Hui Zou and Trevor Hastie

References

print.enet

Print method for enet objects

Description

Print out an enet fit.

Usage

print.enet(x, ...)

Arguments

x enet object

... Additonal arguments for generic print.

Value

NULL

Author(s)

Hui Zou and Trevor Hastie

References

print.spca

Description

Print out a spca fit.

Usage

print.spca(x, ...)

Arguments

 x spca object
 ... Additional arguments for generic print.

Value

 NULL

Author(s)

 Hui Zou and Trevor Hastie

References

spca

Sparse Principal Components Analysis

Description

Using an alternating minimization algorithm to minimize the SPCA criterion.

Usage

 spca(x, K, para, type=c("predictor", "Gram"), sparse=c("penalty", "varnum"), use.corr=FALSE, ...
Arguments

x A matrix. It can be the predictor matrix or the sample covariance/correlation matrix.

K Number of components

para A vector of length K. All elements should be positive. If sparse="varnum", the elements integers.

type If type="predictor", x is the predictor matrix. If type="Gram", the function asks the user to provide the sample covariance or correlation matrix.

sparse If sparse="penalty", para is a vector of 1-norm penalty parameters. If sparse="varnum", para defines the number of sparse loadings to be obtained. This option is not discussed in the paper given below, but it is convenient in practice.

lambda Quadratic penalty parameter. Default value is 1e-6.

use.corr Perform PCA on the correlation matrix? This option is only effective when the argument type is set "data".

max.iter Maximum number of iterations.

trace If TRUE, prints out its progress.

eps.conv Convergence criterion.

Details

PCA is shown to be equivalent to a regression-type optimization problem, then sparse loadings are obtained by imposing the 1-norm constraint on the regression coefficients. If x is a microarray matrix, use arrayspc().

Value

A "spca" object is returned. The below are some quantities which the user may be interested in:

loadings The loadings of the sparse PCs

pev Percentage of explained variance

var.all Total variance of the predictors

Author(s)

Hui Zou, Trevor Hastie and Robert Tibshirani

References

See Also

princomp, arrayspc
Examples

data(pitprops)
out1<-spca(pitprops,K=6,type="Gram",sparse="penalty",trace=TRUE,para=c(0.06,0.16,0.1,0.5,0.5,0.5))
print the object out1
out1
out2<-spca(pitprops,K=6,type="Gram",sparse="varnum",trace=TRUE,para=c(7,4,4,1,1,1))
out2
to see the contents of out2
names(out2)
to get the loadings
out2$loadings
Index

*Topic datasets
 diabetes, 4
 pitprops, 6
*Topic hplot
 plot.enet, 7
*Topic internal
 elasticnet-internal, 4
*Topic methods
 plot.enet, 7
 predict.enet, 8
 print.arrayspc, 9
 print.enet, 10
 print.spca, 10
*Topic multivariate
 arrayspc, 1
 spca, 11
*Topic regression
 cv.enet, 2
 enet, 5
 predict.enet, 8
arrayspc, 1
cv.enet, 2
diabetes, 4
elasticnet-internal, 4
enet, 5
pitprops, 6
plot.enet, 7
predict.enet, 8
print.arrayspc, 9
print.enet, 10
print.spca, 10
rootmatrix(elasticnet-internal), 4
soft(elasticnet-internal), 4
solvebeta(elasticnet-internal), 4
spca, 11
updateRR(elasticnet-internal), 4