The car Package

October 29, 2007

Version 1.2-7
Date 2007/10/27
Title Companion to Applied Regression
Author John Fox <jfox@mcmaster.ca>. I am grateful to Douglas Bates, David Firth, Michael Friendly, Gregor Gorjanc, Spencer Graves, Richard Heiberger, Georges Monette, Henric Nilsson, Brian Ripley, Sanford Weisberg, and Achim Zeileis for various suggestions and contributions.
Maintainer John Fox <jfox@mcmaster.ca>
Depends R (>= 2.1.1), stats, graphics
Suggests MASS, nnet, leaps
LazyLoad yes
LazyData yes

Description This package accompanies J. Fox, An R and S-PLUS Companion to Applied Regression, Sage, 2002. The package contains mostly functions for applied regression, linear models, and generalized linear models, with an emphasis on regression diagnostics, particularly graphical diagnostic methods. There are also some utility functions. With some exceptions, I have tried not to duplicate capabilities in the basic distribution of R, nor in widely used packages. Where relevant, the functions in car are consistent with na.action = na.omit or na.exclude.
License GPL (>= 2)

R topics documented:

Adler .. 3
Angell ... 4
Anova .. 5
Anscombe ... 12
Ask .. 13
Baumann .. 14
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bfox</td>
<td>15</td>
</tr>
<tr>
<td>Blackmoor</td>
<td>16</td>
</tr>
<tr>
<td>Burt</td>
<td>16</td>
</tr>
<tr>
<td>Can.pop</td>
<td>17</td>
</tr>
<tr>
<td>Chile</td>
<td>17</td>
</tr>
<tr>
<td>Chirot</td>
<td>18</td>
</tr>
<tr>
<td>Contrasts</td>
<td>19</td>
</tr>
<tr>
<td>Cowles</td>
<td>21</td>
</tr>
<tr>
<td>Davis</td>
<td>21</td>
</tr>
<tr>
<td>DavisThin</td>
<td>22</td>
</tr>
<tr>
<td>Duncan</td>
<td>23</td>
</tr>
<tr>
<td>Ellipses</td>
<td>24</td>
</tr>
<tr>
<td>Ericksen</td>
<td>26</td>
</tr>
<tr>
<td>Florida</td>
<td>27</td>
</tr>
<tr>
<td>Freedman</td>
<td>28</td>
</tr>
<tr>
<td>Friendly</td>
<td>28</td>
</tr>
<tr>
<td>Ginzberg</td>
<td>29</td>
</tr>
<tr>
<td>Greene</td>
<td>30</td>
</tr>
<tr>
<td>Guyer</td>
<td>31</td>
</tr>
<tr>
<td>Hartnagel</td>
<td>31</td>
</tr>
<tr>
<td>Leinhardt</td>
<td>32</td>
</tr>
<tr>
<td>Mandel</td>
<td>33</td>
</tr>
<tr>
<td>Migration</td>
<td>34</td>
</tr>
<tr>
<td>Moore</td>
<td>35</td>
</tr>
<tr>
<td>Mroz</td>
<td>35</td>
</tr>
<tr>
<td>O'BrienKaiser</td>
<td>36</td>
</tr>
<tr>
<td>Ornstein</td>
<td>37</td>
</tr>
<tr>
<td>Pottery</td>
<td>38</td>
</tr>
<tr>
<td>Prestige</td>
<td>39</td>
</tr>
<tr>
<td>Quartet</td>
<td>40</td>
</tr>
<tr>
<td>Robey</td>
<td>40</td>
</tr>
<tr>
<td>SLID</td>
<td>41</td>
</tr>
<tr>
<td>Sahlins</td>
<td>42</td>
</tr>
<tr>
<td>Soils</td>
<td>42</td>
</tr>
<tr>
<td>States</td>
<td>44</td>
</tr>
<tr>
<td>Transformation Axes</td>
<td>45</td>
</tr>
<tr>
<td>UN</td>
<td>47</td>
</tr>
<tr>
<td>US.pop</td>
<td>47</td>
</tr>
<tr>
<td>Var</td>
<td>48</td>
</tr>
<tr>
<td>Vocab</td>
<td>49</td>
</tr>
<tr>
<td>WomenIf</td>
<td>50</td>
</tr>
<tr>
<td>av.plots</td>
<td>50</td>
</tr>
<tr>
<td>box.cox</td>
<td>52</td>
</tr>
<tr>
<td>box.cox.powers</td>
<td>54</td>
</tr>
<tr>
<td>box.cox.var</td>
<td>56</td>
</tr>
<tr>
<td>box.tidwell</td>
<td>57</td>
</tr>
<tr>
<td>car-internal</td>
<td>59</td>
</tr>
<tr>
<td>car-package</td>
<td>60</td>
</tr>
</tbody>
</table>
The Adler data frame has 97 rows and 3 columns.

The “experimenters” were the actual subjects of the study. They collected ratings of the apparent successfulness of people in pictures who were pre-selected for their average appearance. The experimenters were told prior to collecting data that the pictures were either high or low in their appearance of success, and were instructed to get good data, scientific data, or were given no such instruction. Each experimenter collected ratings from 18 randomly assigned respondents; a few subjects were deleted at random to produce an unbalanced design.
Format

This data frame contains the following columns:

- **instruction** a factor with levels: GOOD, good data; NONE, no stress; SCIENTIFIC, scientific data.
- **expectation** a factor with levels: HIGH, expect high ratings; LOW, expect low ratings.
- **rating** The average rating obtained.

Source

References

Angell

Description

The Angell data frame has 43 rows and 4 columns. The observations are 43 U. S. cities around 1950.

Usage

Angell

Format

This data frame contains the following columns:

- **moral** Moral Integration: Composite of crime rate and welfare expenditures.
- **hetero** Ethnic Heterogenity: From percentages of nonwhite and foreign-born white residents.
- **mobility** Geographic Mobility: From percentages of residents moving into and out of the city.
- **region** A factor with levels: E Northeast; MW Midwest; S Southeast; W West.

Source

References

Description

Calculates type-II or type-III analysis-of-variance tables for model objects produced by `lm`, `glm`, `multinom` (in the `nnet` package), and `polr` (in the `MASS` package). For linear models, F-tests are calculated; for generalized linear models, likelihood-ratio chisquare, Wald chisquare, or F-tests are calculated; for multinomial logit and proportional-odds logit models, likelihood-ratio tests are calculated. Various test statistics are provided for multivariate linear models produced by `lm` or `manova`.

Usage

Anova(mod, ...)

Manova(mod, ...)

S3 method for class 'lm':
Anova(mod, error, type=c("II","III", 2, 3), ...)

S3 method for class 'aov':
Anova(mod, ...)

S3 method for class 'glm':
Anova(mod, type=c("II","III", 2, 3),
 test.statistic=c("LR", "Wald", "F"),
 error, error.estimate=c("pearson", "dispersion", "deviance"), ...)

S3 method for class 'multinom':
Anova(mod, type = c("II","III", 2, 3), ...)

S3 method for class 'polr':
Anova(mod, type = c("II","III", 2, 3), ...)

S3 method for class 'mlm':
Anova(mod, type=c("II","III", 2, 3), SSPE, error.df, idata, idesign, icontrasts=c("contr.sum", "contr.poly"),
 test.statistic=c("Pillai", "Wilks", "Hotelling-Lawley", "Roy"),...)

S3 method for class 'manova':
Anova(mod, ...)

S3 method for class 'mlm':
Manova(mod, ...)

S3 method for class 'Anova.mlm':
print(x, ...)

S3 method for class 'Anova.mlm':
summary(object, test.statistic, multivariate=TRUE,
 univariate=TRUE, digits=unlist(options("digits")), ...)

Arguments

mod lm, aov, glm, multinom, polr or mlm model object.
error for a linear model, an lm model object from which the error sum of squares
and degrees of freedom are to be calculated. For F-tests for a generalized linear
model, a glm object from which the dispersion is to be estimated. If not
specified, mod is used.
type type of test, "II", "III", 2, or 3.
test.statistic for a generalized linear model, whether to calculate "LR" (likelihood-ratio),
"Wald", or "F" tests. For a multivariate linear model, the multivariate test
statistic to compute — one of "Pillai", "Wilks", "Hotelling-Lawley",
or "Roy", with "Pillai" as the default. The summary method for Anova.mlm
objects permits the specification of more than one multivariate test statistic, and
the default is to report all four.
error.estimate for F-tests for a generalized linear model, base the dispersion estimate on the
Pearson residuals (pearson, the default); use the dispersion estimate in the
model object (dispersion), which, e.g., is fixed to 1 for binomial and Poisson
models; or base the dispersion estimate on the residual deviance (deviance).
SSPE The error sum-of-squares-and-products matrix; if missing, will be computed
from the residuals of the model.
error.df The degrees of freedom for error; if missing, will be taken from the model.
idata an optional data frame giving a factor or factors defining the intra-subject model
for multivariate repeated-measures data. See Details for an explanation of the
intra-subject design and for further explanation of the other arguments relating
to intra-subject factors.
idesign a one-sided model formula using the "data" in idata and specifying the intra-
subject design.
icontrasts names of contrast-generating functions to be applied by default to factors and
ordered factors, respectively, in the within-subject "data"; the contrasts must
produce an intra-subject model matrix in which different terms are orthogonal.
The default is c("contr.sum", "contr.poly").
x, object object of class "Anova.mlm" to print or summarize.
multivariate, univariate
print multivariate and univariate tests for a repeated-measures ANOVA; the de-
fault is TRUE for both.
digits minimum number of significant digits to print.
... arguments to be passed to linear.hypothesis; only use white.adjust for a linear model.
Details

The designations "type-II" and "type-III" are borrowed from SAS, but the definitions used here do not correspond precisely to those employed by SAS. Type-II tests are calculated according to the principle of marginality, testing each term after all others, except ignoring the term’s higher-order relatives; so-called type-III tests violate marginality, testing each term in the model after all of the others. This definition of Type-II tests corresponds to the tests produced by SAS for analysis-of-variance models, where all of the predictors are factors, but not more generally (i.e., when there are quantitative predictors). Be very careful in formulating the model for type-III tests, or the hypotheses tested will not make sense.

As implemented here, type-II Wald tests for generalized linear models are actually differences of Wald statistics.

For tests for linear models, multivariate linear models, and Wald tests for generalized linear models, Anova finds the test statistics without refitting the model.

The standard R anova function calculates sequential ("type-I") tests. These rarely test interesting hypotheses.

A MANOVA for a multivariate linear model (i.e., an object of class "mlm" or "manova") can optionally include an intra-subject repeated-measures design. If the intra-subject design is absent (the default), the multivariate tests concern all of the response variables. To specify a repeated-measures design, a data frame is provided defining the repeated-measures factor or factors via idata, with default contrasts given by the icontrasts argument. An intra-subject model-matrix is generated from the formula specified by the idesign argument; columns of the model matrix corresponding to different terms in the intra-subject model must be orthogonal (as is insured by the default contrasts). Note that the contrasts given in icontrasts can be overridden by assigning specific contrasts to the factors in idata. Manova is essentially a synonym for Anova for multivariate linear models.

Value

An object of class "anova", or "Anova.mlm", which usually is printed. For objects of class "Anova.mlm", there is also a summary method, which provides much more detail than the print method about the MANOVA, including traditional mixed-model univariate F-tests with Greenhouse-Geisser and Hunyh-Feldt corrections.

Warning

Be careful of type-III tests.

Author(s)

John Fox (jfox@mcmaster.ca)

References

See Also

`linear.hypothesis`, `anova`, `anova.lm`, `anova.glm`, `anova.mlm`

Examples

```r
## Two-Way Anova

mod <- lm(conformity ~ fcategory*partner.status, data=Moore, 
  contrasts=list(fcategory=contr.sum, partner.status=contr.sum))
Anova(mod)
## Anova Table (Type II tests)
##
## Response: conformity
##            Sum Sq Df F value Pr(>F)
## fcategory   11.61  2 0.2770 0.759564
## partner.status 212.21  1 10.1207 0.002874
## fcategory:partner.status 175.49  2 4.1846 0.022572
## Residuals    817.76 39

Anova(mod, type="III")
## Anova Table (Type III tests)
##
## Response: conformity
##            Sum Sq Df F value Pr(>F)
## (Intercept) 5752.8  1 274.3592 < 2.2e-16
## fcategory   36.0  2  0.8589 0.431492
## partner.status 239.6  1 11.4250 0.001657
## fcategory:partner.status 175.5  2  4.1846 0.022572
## Residuals    817.8 39

## One-Way MANOVA
## See ?Pottery for a description of the data set used in this example.

summary(Anova(lm(cbind(Al, Fe, Mg, Ca, Na) ~ Site, data=Pottery)))
## Type II MANOVA Tests:
##
## Sum of squares and products for error:
##            Al    Fe    Mg    Ca    Na
## Al  48.2881429 7.08007143 0.60801429 0.10647143 0.58895714
## Fe  7.08007143 10.95084571 0.52705714 -0.15519429 0.06675857
## Mg 0.60801429 0.52705714 15.42961143 0.43537714 0.02761571
## Ca 0.10647143 -0.15519429 0.43537714 0.05148571 0.01007857
## Na 0.58895714 0.06675857 0.02761571 0.01007857 0.19929286
##
## ------------------------------------------
##
## Term: Site
```
Sum of squares and products for the hypothesis:

<table>
<thead>
<tr>
<th></th>
<th>Al</th>
<th>Fe</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>175.610319</td>
<td>-149.295533</td>
<td>-130.809707</td>
<td>-5.8891637</td>
<td>-5.3722648</td>
</tr>
<tr>
<td>Fe</td>
<td>-149.295533</td>
<td>134.221616</td>
<td>117.745035</td>
<td>4.8217866</td>
<td>5.3259491</td>
</tr>
<tr>
<td>Mg</td>
<td>-130.809707</td>
<td>117.745035</td>
<td>103.350527</td>
<td>4.2091613</td>
<td>4.7105458</td>
</tr>
<tr>
<td>Ca</td>
<td>-5.889164</td>
<td>4.821787</td>
<td>4.209161</td>
<td>0.2047027</td>
<td>0.1547830</td>
</tr>
<tr>
<td>Na</td>
<td>-5.372265</td>
<td>5.325949</td>
<td>4.710546</td>
<td>0.1547830</td>
<td>0.2582456</td>
</tr>
</tbody>
</table>

Multivariate Tests: Site

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>test stat</th>
<th>approx F</th>
<th>num Df</th>
<th>den Df</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pillai</td>
<td>3.00000</td>
<td>1.55394</td>
<td>4.29839</td>
<td>15.00000</td>
<td>60.00000</td>
<td>2.4129e-05 ***</td>
</tr>
<tr>
<td>Wilks</td>
<td>3.00000</td>
<td>0.01230</td>
<td>13.08854</td>
<td>15.00000</td>
<td>50.09147</td>
<td>1.8404e-12 ***</td>
</tr>
<tr>
<td>Hotelling-Lawley</td>
<td>3.00000</td>
<td>35.43875</td>
<td>39.37639</td>
<td>15.00000</td>
<td>50.00000</td>
<td>< 2.22e-16 ***</td>
</tr>
<tr>
<td>Roy</td>
<td>3.00000</td>
<td>34.16111</td>
<td>136.64446</td>
<td>5.000000</td>
<td>20.00000</td>
<td>9.4435e-15 ***</td>
</tr>
<tr>
<td>Signif. codes: 0 '' 0.001 '' 0.01 '' 0.05 '.' 0.1 ' ' 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MANOVA for a randomized block design (example courtesy of Michael Friendly:

See ?Soils for description of the data set)

doils.mod <- lm(cbind(pH,N,Dens,P,Ca,Mg,K,Na,Conduc) ~ Block + Contour*Depth, data=Soils)
Manova(doils.mod)

Type II MANOVA Tests: Pillai test statistic

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>test stat</th>
<th>approx F</th>
<th>num Df</th>
<th>den Df</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block</td>
<td>3.00000</td>
<td>1.6758</td>
<td>3.7965</td>
<td>27</td>
<td>81</td>
<td>1.777e-06 ***</td>
</tr>
<tr>
<td>Contour</td>
<td>2.00000</td>
<td>1.3386</td>
<td>5.8468</td>
<td>18</td>
<td>52</td>
<td>2.730e-07 ***</td>
</tr>
<tr>
<td>Depth</td>
<td>3.00000</td>
<td>1.7951</td>
<td>4.4697</td>
<td>27</td>
<td>81</td>
<td>8.777e-08 ***</td>
</tr>
<tr>
<td>Contour:Depth</td>
<td>6.00000</td>
<td>1.2351</td>
<td>0.8640</td>
<td>54</td>
<td>180</td>
<td>0.7311</td>
</tr>
<tr>
<td>Signif. codes: 0 '' 0.001 '' 0.01 '' 0.05 '.' 0.1 ' ' 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a multivariate linear model for repeated-measures data

See ?OBrienKaiser for a description of the data set used in this example.

phase <- factor(rep(c("pretest", "posttest", "followup"), c(5, 5, 5)),
levels=c("pretest", "posttest", "followup"))
hour <- ordered(rep(1:5, 3))
data <- data.frame(phase, hour)
data

<table>
<thead>
<tr>
<th>phase</th>
<th>hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pretest</td>
</tr>
<tr>
<td>2</td>
<td>pretest</td>
</tr>
<tr>
<td>3</td>
<td>pretest</td>
</tr>
<tr>
<td>4</td>
<td>pretest</td>
</tr>
<tr>
<td>5</td>
<td>pretest</td>
</tr>
<tr>
<td>6</td>
<td>posttest</td>
</tr>
<tr>
<td>7</td>
<td>posttest</td>
</tr>
<tr>
<td>8</td>
<td>posttest</td>
</tr>
<tr>
<td>9</td>
<td>posttest</td>
</tr>
<tr>
<td>10</td>
<td>posttest</td>
</tr>
<tr>
<td>11</td>
<td>followup</td>
</tr>
</tbody>
</table>
mod.ok <- lm(cbind(pre.1, pre.2, pre.3, pre.4, pre.5, post.1, post.2, post.3, post.4, post.5, fup.1, fup.2, fup.3, fup.4, fup.5) ~ treatment*gender, data=OBrienKaiser)

(av.ok <- Anova(mod.ok, idata=idata, idesign=~phase*hour))

Type II Repeated Measures MANOVA Tests: Pillai test statistic
##
Df test stat approx F num Df den Df Pr(>F)
treatment 2 0.4809 4.6323 2 10 0.0376868 *
gender 1 0.2036 2.5558 1 10 0.1409735
treatment:gender 2 0.3635 2.8555 2 10 0.1044692 ***
phase 1 0.8505 25.6053 2 9 0.0001930 ***
treatment:phase 2 0.6852 2.6056 4 20 0.0667354 .
gender:phase 1 0.0431 0.2029 2 9 0.8199968
treatment:gender:phase 2 0.3106 0.9193 4 20 0.4721498
hour 1 0.9347 25.0401 4 7 0.0003043 ***
treatment:hour 2 0.3014 0.3549 8 16 0.9295212
gender:hour 1 0.2927 0.7243 4 7 0.8199968
treatment:gender:phase:hour 2 0.7928 0.3283 16 8 0.9723693

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(av.ok, multivariate=FALSE)

Univariate Type II Repeated-Measures ANOVA Assuming Sphericity
##
Df test stat approx F num Df den Df Pr(>F)
treatment 2 0.4809 4.6323 2 10 0.0376868 *
gender 1 0.2036 2.5558 1 10 0.1409735
treatment:gender 2 0.3635 2.8555 2 10 0.1044692 ***
phase 1 0.8505 25.6053 2 9 0.0001930 ***
treatment:phase 2 0.6852 2.6056 4 20 0.0667354 .
gender:phase 1 0.0431 0.2029 2 9 0.8199968
treatment:gender:phase 2 0.3106 0.9193 4 20 0.4721498
hour 1 0.9347 25.0401 4 7 0.0003043 ***
treatment:hour 2 0.3014 0.3549 8 16 0.9295212
gender:hour 1 0.2927 0.7243 4 7 0.8199968
treatment:gender:phase:hour 2 0.7928 0.3283 16 8 0.9723693

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary (av.ok, multivariate=FALSE)
treatment:gender
phase ***
treatment:phase **
gender:phase
treatment:gender:phase ***
hour ***
treatment:hour
gender:hour
treatment:gender:hour
phase:hour
treatment:phase:hour
gender:phase:hour
treatment:gender:phase:hour
--
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Mauchly Tests for Sphericity

<table>
<thead>
<tr>
<th>Test statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>phase</td>
<td>0.74927 0.27282</td>
</tr>
<tr>
<td>treatment:phase</td>
<td>0.74927 0.27282</td>
</tr>
<tr>
<td>gender:phase</td>
<td>0.74927 0.27282</td>
</tr>
<tr>
<td>treatment:gender:phase</td>
<td>0.74927 0.27282</td>
</tr>
<tr>
<td>hour</td>
<td>0.06607 0.00760</td>
</tr>
<tr>
<td>treatment:hour</td>
<td>0.06607 0.00760</td>
</tr>
<tr>
<td>gender:hour</td>
<td>0.06607 0.00760</td>
</tr>
<tr>
<td>treatment:gender:hour</td>
<td>0.06607 0.00760</td>
</tr>
<tr>
<td>phase:hour</td>
<td>0.00478 0.44939</td>
</tr>
<tr>
<td>treatment:phase:hour</td>
<td>0.00478 0.44939</td>
</tr>
<tr>
<td>gender:phase:hour</td>
<td>0.00478 0.44939</td>
</tr>
<tr>
<td>treatment:gender:phase:hour</td>
<td>0.00478 0.44939</td>
</tr>
</tbody>
</table>

Greenhouse-Geisser and Huynh-Feldt Corrections for Departure from Sphericity

<table>
<thead>
<tr>
<th>GG</th>
<th>eps</th>
<th>Pr(>F[GG])</th>
</tr>
</thead>
<tbody>
<tr>
<td>phase</td>
<td>0.79953</td>
<td>7.323e-05 ***</td>
</tr>
<tr>
<td>treatment:phase</td>
<td>0.79953</td>
<td>0.01223 *</td>
</tr>
<tr>
<td>gender:phase</td>
<td>0.79953</td>
<td>0.76616</td>
</tr>
<tr>
<td>treatment:gender:phase</td>
<td>0.79953</td>
<td>0.61162</td>
</tr>
<tr>
<td>hour</td>
<td>0.46028</td>
<td>8.741e-05 ***</td>
</tr>
<tr>
<td>treatment:hour</td>
<td>0.46028</td>
<td>0.97879</td>
</tr>
<tr>
<td>gender:hour</td>
<td>0.46028</td>
<td>0.65346</td>
</tr>
<tr>
<td>treatment:gender:hour</td>
<td>0.46028</td>
<td>0.64136</td>
</tr>
<tr>
<td>phase:hour</td>
<td>0.44950</td>
<td>0.34573</td>
</tr>
<tr>
<td>treatment:phase:hour</td>
<td>0.44950</td>
<td>0.94019</td>
</tr>
<tr>
<td>gender:phase:hour</td>
<td>0.44950</td>
<td>0.58903</td>
</tr>
<tr>
<td>treatment:gender:phase:hour</td>
<td>0.44950</td>
<td>0.64634</td>
</tr>
</tbody>
</table>

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The Anscombe data frame has 51 rows and 4 columns. The observations are the U. S. states plus Washington, D. C. in 1970.

Usage

Anscombe

Format

This data frame contains the following columns:

- **education** Per-capita education expenditures, dollars.
- **income** Per-capita income, dollars.
- **young** Proportion under 18, per 1000.
- **urban** Proportion urban, per 1000.

Source

References

Ask

Change Argument to a Function Interactively

Description

Ask allows you to change the argument to a function interactively. It is meant to be used, in lieu of a graphical control such as a slidebar, to adjust plotting parameters, which are most naturally passed as the argument to an anonymous function that sets up the plot.

Usage

Ask(arg, fun, ...)

Arguments

arg argument to fun to change. By specifying a vector of values, you can change several parameters via an argument to an anonymous function.

fun function to call; often an anonymous function that sets up a call to plotting functions.

... other arguments to fun; not necessary if fun is an anonymous function.

Details

Ask repeatedly prompts in the R Console for the value of arg. To exit, enter a blank line.

Value

Ask returns invisibly the value of the last call to fun; usually this will be NULL, and in any event is probably not of interest. If it is, use print(Ask(arg, fun, ...)).

Author(s)

John Fox (jfox@mcmaster.ca)

Examples

```r
## Not run:
attach(UN)

# enter the power-transformation parameter
# start with 1
Ask(p, function(p) qq.plot(box.cox(gdp, p),
  ylab=paste("transformed gdp, power =",p)))

# enter an expression that evaluates to a 2-vector
# of powers; e.g., start with c(1,1); then interactively
# identify points in each plot
Ask(p, function(p) scatterplot(box.cox(gdp,p[1]),
```
Methods of Teaching Reading Comprehension

Description

The Baumann data frame has 66 rows and 6 columns. The data are from an experimental study conducted by Baumann and Jones, as reported by Moore and McCabe (1993). Students were randomly assigned to one of three experimental groups.

Usage

Baumann

Format

This data frame contains the following columns:

- **group** Experimental group; a factor with levels: Basal, traditional method of teaching; DRTA, an innovative method; Strat, another innovative method.
- **pretest.1** First pretest.
- **pretest.2** Second pretest.
- **post.test.1** First post-test.
- **post.test.2** Second post-test.
- **post.test.3** Third post-test.

Source

The Bfox data frame has 30 rows and 7 columns. Time-series data on Canadian women’s labor-force participation, 1946–1975.

This data frame contains the following columns:

- **partic**: Percent of adult women in the workforce.
- **tfr**: Total fertility rate: expected births to a cohort of 1000 women at current age-specific fertility rates.
- **menwage**: Men’s average weekly wages, in constant 1935 dollars and adjusted for current tax rates.
- **womwage**: Women’s average weekly wages.
- **debt**: Per-capita consumer debt, in constant dollars.
- **parttime**: Percent of the active workforce working 34 hours per week or less.

The value of tfr for 1973 is misrecorded as 2931; it should be 1931.

Blackmoor

Exercise Histories of Eating-Disordered and Control Subjects

Description

The Blackmoor data frame has 945 rows and 4 columns. Blackmoor and Davis’s data on exercise histories of 138 teenaged girls hospitalized for eating disorders and 98 control subjects.

Usage

Blackmoor

Format

This data frame contains the following columns:

- **subject** a factor with subject id codes.
- **age** age in years.
- **exercise** hours per week of exercise.
- **group** a factor with levels: control, Control subjects; patient, Eating-disordered patients.

Source

Personal communication from Elizabeth Blackmoor and Caroline Davis, York University.

Burt

Fraudulent Data on IQs of Twins Raised Apart

Description

The Burt data frame has 27 rows and 4 columns. The “data” were simply (and notoriously) manufactured.

Usage

Burt

Format

This data frame contains the following columns:

- **IQbio** IQ of twin raised by biological parents
- **IQfoster** IQ of twin raised by foster parents
- **class** A factor with levels (note: out of order): high; low; medium.
Source

Canadian Population Data

Description

Usage
Can.pop

Format
This data frame contains the following columns:

- **year** census year.
- **population** Population, in millions

Source
Canada (1994) *Canada Year Book*. Statistics Canada [Table 3.2].

References

Voting Intentions in the 1988 Chilean Plebiscite

Description
The Chile data frame has 2700 rows and 8 columns. The data are from a national survey conducted in April and May of 1988 by FLACSO/Chile. There are some missing data.

Usage
Chile
Format

This data frame contains the following columns:

- **region** A factor with levels: C, Central; M, Metropolitan Santiago area; N, North; S, South; SA, city of Santiago.
- **population** Population size of respondent’s community.
- **sex** A factor with levels: F, female; M, male.
- **age** in years.
- **education** A factor with levels (note: out of order): P, Primary; PS, Post-secondary; S, Secondary.
- **income** Monthly income, in Pesos.
- **statusquo** Scale of support for the status-quo.
- **vote** a factor with levels: A, will abstain; N, will vote no (against Pinochet); U, undecided; Y, will vote yes (for Pinochet).

Source

Personal communication from FLACSO/Chile.

References

Chirot

The 1907 Romanian Peasant Rebellion

Description

The Chirot data frame has 32 rows and 5 columns. The observations are counties in Romania.

Usage

Chirot

Format

This data frame contains the following columns:

- **intensity** Intensity of the rebellion
- **commerce** Commercialization of agriculture
- **tradition** Traditionalism
- **midpeasant** Strength of middle peasantry
- **inequality** Inequality of land tenure
Source

References

<table>
<thead>
<tr>
<th>Contrasts</th>
<th>Functions to Construct Contrasts</th>
</tr>
</thead>
</table>

Description

These are substitutes for similarly named functions in the base package (note the uppercase letter starting the second word in each function name). The only difference is that the contrast functions from the car package produce easier-to-read names for the contrasts when they are used in statistical models.

The functions and this documentation are adapted from the base package.

Usage

contr.Treatment(n, base = 1, contrasts = TRUE)

contr.Sum(n, contrasts = TRUE)

contr.Helmert(n, contrasts = TRUE)

Arguments

n
 a vector of levels for a factor, or the number of levels.

base
 an integer specifying which level is considered the baseline level. Ignored if contrasts is FALSE.

contrasts
 a logical indicating whether contrasts should be computed.

Details

These functions are used for creating contrast matrices for use in fitting analysis of variance and regression models. The columns of the resulting matrices contain contrasts which can be used for coding a factor with n levels. The returned value contains the computed contrasts. If the argument contrasts is FALSE then a square matrix is returned.

Several aspects of these contrast functions are controlled by options set via the options command:

decorate.contrasts
 This option should be set to a 2-element character vector containing the prefix and suffix characters to surround contrast names. If the option is not set, then c("[", "]") is used. For example, setting options(decorate.contrasts=c(".", "")) produces contrast names that are separated from factor names by a period. Setting options(decorate.contrast = "")) reproduces the behaviour of the R base contrast functions.
decorate.contr.Treatment A character string to be appended to contrast names to signify treatment contrasts; if the option is unset, then "T." is used.

decorate.contr.Sum Similar to the above, with default "S."

decorate.contr.Helmert Similar to the above, with default "H."

contr.Sum.show.levels Logical value: if TRUE (the default if unset), then level names are used for contrasts; if FALSE, then numbers are used, as in `contr.sum` in the base package.

Note that there is no replacement for `contr.poly` in the base package (which produces orthogonal-polynomial contrasts) since this function already constructs easy-to-read contrast names.

Value

A matrix with \(n \) rows and \(k \) columns, with \(k = n - 1 \) if `contrasts` is TRUE and \(k = n \) if `contrasts` is FALSE.

Author(s)

John Fox ⟨jfox@mcmaster.ca⟩

See Also

`contr.treatment, contr.sum, contr.helmert, contr.poly`

Examples

```r
# contr.Treatment vs. contr.treatment in the base package:

lm(prestige ~ (income + education) * type, data=Prestige, 
   contrasts=list(type="contr.Treatment"))

## Call:
## lm(formula = prestige ~ (income + education) * type, data = Prestige, 
##    contrasts = list(type = "contr.Treatment"))

## Coefficients:
## (Intercept) income education
## 2.275753 0.003522 1.713275
## 15.351896 -33.536652 -0.002903
## -0.002072 1.387809 4.290875

lm(prestige ~ (income + education) * type, data=Prestige, 
   contrasts=list(type="contr.treatment"))

## Call:
## lm(formula = prestige ~ (income + education) * type, data = Prestige, 
##    contrasts = list(type = "contr.treatment"))

## Coefficients:
## (Intercept) income education
## -0.002072 1.387809 4.290875
```
Cowles

Cowles and Davis’s Data on Volunteering

Description

The Cowles data frame has 1421 rows and 4 columns. These data come from a study of the personality determinants of volunteering for psychological research.

Usage

Cowles

Format

This data frame contains the following columns:

- neuroticism scale from Eysenck personality inventory
- extraversion scale from Eysenck personality inventory
- sex a factor with levels: female; male
- volunteer volunteering, a factor with levels: no; yes

Source

Davis

Self-Reports of Height and Weight

Description

The Davis data frame has 200 rows and 5 columns. The subjects were men and women engaged in regular exercise. There are some missing data.

Usage

Davis
Formatt

This data frame contains the following columns:

sex A factor with levels: F, female; M, male.
weight Measured weight in kg.
height Measured height in cm.
reptw Report weight in kg.
repht Reported height in cm.

Source

Personal communication from C. Davis, Departments of Physical Education and Psychology, York University.

References

Description

The DavisThin data frame has 191 rows and 7 columns. This is part of a larger dataset for a study of eating disorders. The seven variables in the data frame comprise a "drive for thinness" scale, to be formed by summing the items.

Usage

DavisThin

Format

This data frame contains the following columns:

DT1 a numeric vector
DT2 a numeric vector
DT3 a numeric vector
DT4 a numeric vector
DT5 a numeric vector
DT6 a numeric vector
DT7 a numeric vector
Source

Duncan’s Occupational Prestige Data

Description

The Duncan data frame has 45 rows and 4 columns. Data on the prestige and other characteristics of 45 U.S. occupations in 1950.

Usage

Duncan

Format

This data frame contains the following columns:

- **type** Type of occupation. A factor with the following levels: prof, professional and managerial; wc, white-collar; bc, blue-collar.
- **income** Percent of males in occupation earning $3500 or more in 1950.
- **education** Percent of males in occupation in 1950 who were high-school graduates.
- **prestige** Percent of raters in NORC study rating occupation as excellent or good in prestige.

Source

References

Ellipses, Data Ellipses, and Confidence Ellipses

Description

These functions draw ellipses, including data ellipses, and confidence ellipses for linear and generalized linear models.

Usage

```r
ellipse(center, shape, radius, center.pch=19, center.cex=1.5, segments=51, add=TRUE, xlab="", ylab="", las=par('las'), col=palette()[2], lwd=2, lty=1, ...)

data.ellipse(x, y, levels=c(0.5, 0.9), center.pch=19, center.cex=1.5, plot.points=TRUE, add=!plot.points, segments=51, robust=FALSE, xlab=deparse(substitute(x)), ylab=deparse(substitute(y)), las=par('las'), col=palette()[2], pch=1, lwd=2, lty=1, ...)

confidence.ellipse(model, ...)

## S3 method for class 'lm':
confidence.ellipse(model, which.coef, levels=0.95, Scheffe=FALSE, center.pch=19, center.cex=1.5, segments=51, xlab, ylab, las=par('las'), col=palette()[2], lwd=2, lty=1, ...)

## S3 method for class 'glm':
confidence.ellipse(model, which.coef, levels=0.95, Scheffe=FALSE, center.pch=19, center.cex=1.5, segments=51, xlab, ylab, las=par('las'), col=palette()[2], lwd=2, lty=1, ...)
```

Arguments

- `center` 2-element vector with coordinates of center of ellipse.
- `shape` 2×2 shape (or covariance) matrix.
- `radius` radius of circle generating the ellipse.
- `center.pch` character for plotting ellipse center.
- `center.cex` relative size of character for plotting ellipse center.
- `segments` number of line-segments used to draw ellipse.
- `add` if `TRUE` add ellipse to current plot.
- `xlab` label for horizontal axis.
- `ylab` label for vertical axis.
- `x` a numeric vector, or (if `y` is missing) a 2-column numeric matrix.
Ellipses

y a numeric vector, of the same length as x.
plot.points if FALSE data ellipses are added to the current scatterplot, but points are not plotted.
levels draw elliptical contours at these (normal) probability or confidence levels.
robust if TRUE use the cov.trob function in the MASS package to calculate the center and covariance matrix for the data ellipse.
model a model object produced by lm or glm.
which.coef 2-element vector giving indices of coefficients to plot; if missing, the first two coefficients (disregarding the regression constant) will be selected.
Scheffe if TRUE scale the ellipse so that its projections onto the axes give Scheffe confidence intervals for the coefficients.
las if 0, ticks labels are drawn parallel to the axis; set to 1 for horizontal labels (see par).
col color for points and lines; the default is the second entry in the current color palette (see palette and par).
pch plotting character for points; default is 1 (a circle, see par).
lwd line width; default is 2 (see par).
lty line type; default is 1, a solid line (see par).
... other plotting parameters to be passed to plot and line.

Details

The ellipse is computed by suitably transforming a unit circle.
data.ellipse superimposes the normal-probability contours over a scatterplot of the data.

Value

NULL. These functions are used for their side effect: producing plots.

Author(s)

Georges Monette ⟨Georges.Monette@mathstat.YorkU.CA⟩ and John Fox ⟨jfox@mcmaster.ca⟩

References

See Also

cov.trob.

Examples

data.ellipse(Prestige$income, Prestige$education, levels=0.1*1:9, lty=2)
confidence.ellipse(lm(prestige~income+education, data=Prestige), Scheffe=TRUE)
Description

The Ericksen data frame has 66 rows and 9 columns. The observations are 16 large cities, the remaining parts of the states in which these cities are located, and the other U. S. states.

Usage

Ericksen

Format

This data frame contains the following columns:

- **minority** Percentage black or Hispanic.
- **crime** Rate of serious crimes per 1000 population.
- **poverty** Percentage poor.
- **language** Percentage having difficulty speaking or writing English.
- **highschool** Percentage age 25 or older who had not finished highschool.
- **housing** Percentage of housing in small, multiunit buildings.
- **city** A factor with levels: *city*, major city; *state*, state or state-remainder.
- **conventional** Percentage of households counted by conventional personal enumeration.
- **undercount** Preliminary estimate of percentage undercount.

Source

References

Description

The Florida data frame has 67 rows and 11 columns. Vote by county in Florida for President in the 2000 election.

Usage

Florida

Format

This data frame contains the following columns:

- GORE Number of votes for Gore
- BUSH Number of votes for Bush.
- BUCHANAN Number of votes for Buchanan.
- NADER Number of votes for Nader.
- BROWNE Number of votes for Browne (whoever that is).
- HAGELIN Number of votes for Hagelin (whoever that is).
- HARRIS Number of votes for Harris (whoever that is).
- MCREYNOLDS Number of votes for McReynolds (whoever that is).
- MOOREHEAD Number of votes for Moorehead (whoever that is).
- PHILLIPS Number of votes for Phillips (whoever that is).
- Total Total number of votes.

Source

Freedman

Crowding and Crime in U. S. Metropolitan Areas

Description

The Freedman data frame has 110 rows and 4 columns. The observations are U. S. metropolitan areas with 1968 populations of 250,000 or more. There are some missing data.

Usage

Freedman

Format

This data frame contains the following columns:

- **population** Total 1968 population, 1000s.
- **nonwhite** Percent nonwhite population, 1960.
- **density** Population per square mile, 1968.
- **crime** Crime rate per 100,000, 1969.

Source

References

Friendly

Format Effects on Recall

Description

The Friendly data frame has 30 rows and 2 columns. The data are from an experiment on subjects’ ability to remember words based on the presentation format.

Usage

Friendly
Format

This data frame contains the following columns:

- **condition** A factor with levels: Before, Recalled words presented before others; Meshed, Recalled words meshed with others; SFR, Standard free recall.
- **correct** Number of words correctly recalled, out of 40 on final trial of the experiment.

Source

Personal communication from M. Friendly, Department of Psychology, York University.

References

Ginzberg Data on Depression

Description

The Ginzberg data frame has 82 rows and 6 columns. The data are for psychiatric patients hospitalized for depression.

Usage

Ginzberg

Format

This data frame contains the following columns:

- **simplicity** Measures subject’s need to see the world in black and white.
- **fatalism** Fatalism scale.
- **depression** Beck self-report depression scale.
- **adjsimp** Adjusted Simplicity: Simplicity adjusted (by regression) for other variables thought to influence depression.
- **adjfatal** Adjusted Fatalism.
- **adjdep** Adjusted Depression.

Source

Personal communication from Georges Monette, Department of Mathematics and Statistics, York University, with the permission of the original investigator.
References

Greene

Refugee Appeals

Description

The Greene data frame has 384 rows and 7 columns. These are cases filed in 1990, in which refugee claimants rejected by the Canadian Immigration and Refugee Board asked the Federal Court of Appeal for leave to appeal the negative ruling of the Board.

Usage

Greene

Format

This data frame contains the following columns:

- **judge** Name of judge hearing case. A factor with levels: Desjardins, Heald, Hugessen, Iacobucci, MacGuigan, Mahoney, Marceau, Pratte, Stone, Urie.
- **nation** Nation of origin of claimant. A factor with levels: Argentina, Bulgaria, China, Czechoslovakia, El.Salvador, Fiji, Ghana, Guatemala, India, Iran, Lebanon, Nicaragua, Nigeria, Pakistan, Poland, Somalia, Sri.Lanka.
- **rater** Judgment of independent rater. A factor with levels: no, case has no merit; yes, case has some merit (leave to appeal should be granted).
- **decision** Judge’s decision. A factor with levels: no, leave to appeal not granted; yes, leave to appeal granted.
- **language** Language of case. A factor with levels: English, French.
- **location** Location of original refugee claim. A factor with levels: Montreal, other, Toronto.
- **success** Logit of success rate, for all cases from the applicant’s nation.

Source

Personal communication from Ian Greene, Department of Political Science, York University.

References

Description

The Guyer data frame has 20 rows and 3 columns. The data are from an experiment in which four-person groups played a prisoner’s dilemma game for 30 trails, each person making either a cooperative or competitive choice on each trial. Choices were made either anonymously or in public; groups were composed either of females or of males. The observations are 20 groups.

Usage

Guyer

Format

This data frame contains the following columns:

- **cooperation**: Number of cooperative choices (out of 120 in all).
- **sex**: Sex. A factor with levels: F, Female; M, Male.

Source

References

Description

The Hartnagel data frame has 38 rows and 7 columns. The data are an annual time-series from 1931 to 1968. There are some missing data.

Usage

Hartnagel
Leinhardt Data on Infant-Mortality

Description

The Leinhardt data frame has 105 rows and 4 columns. The observations are nations of the world around 1970.

Usage

Leinhardt

Format

This data frame contains the following columns:

- **year**: 1931–1968.
- **tfr**: Total fertility rate per 1000 women.
- **partic**: Women’s labor-force participation rate per 1000.
- **degrees**: Women’s post-secondary degree rate per 10,000.
- **fconvict**: Female indictable-offense conviction rate per 100,000.
- **fttheft**: Female theft conviction rate per 100,000.
- **mconvict**: Male indictable-offense conviction rate per 100,000.
- **mtheft**: Male theft conviction rate per 100,000.

Details

The post-1948 crime rates have been adjusted to account for a difference in method of recording. Some of your results will differ in the last decimal place from those in Table 14.1 of Fox (1997) due to rounding of the data. Missing values for 1950 were interpolated.

Source

Personal communication from T. Hartnagel, Department of Sociology, University of Alberta.

References

Format
This data frame contains the following columns:

- **income**: Per-capita income in U. S. dollars.
- **infant**: Infant-mortality rate per 1000 live births.
- **region**: A factor with levels: Africa; Americas; Asia, Asia and Oceania; Europe.
- **oil**: Oil-exporting country. A factor with levels: no, yes.

Details
The infant-mortality rate for Jamaica is misprinted in Leinhardt and Wasserman; the correct value is given here. Some of the values given in Leinhardt and Wasserman do not appear in the original New York Times table.

Source

References

Mandel

Contrived Collinear Data

Description
The Mandel data frame has 8 rows and 3 columns.

Usage
Mandel

Format
This data frame contains the following columns:

- **x1**: first predictor.
- **x2**: second predictor.
- **y**: response.

Source
Migration

Canadian Interprovincial Migration Data

Description

The Migration data frame has 90 rows and 8 columns.

Usage

Migration

Format

This data frame contains the following columns:

- **source**: Province of origin (source). A factor with levels: ALTA, Alberta; BC, British Columbia; MAN, Manitoba; NB, New Brunswick; NFLD, New Foundland; NS, Nova Scotia; ONT, Ontario; PEI, Prince Edward Island; QUE, Quebec; SASK, Saskatchewan.

- **destination**: Province of destination (1971 residence). A factor with levels: ALTA, Alberta; BC, British Columbia; MAN, Manitoba; NB, New Brunswick; NFLD, New Foundland; NS, Nova Scotia; ONT, Ontario; PEI, Prince Edward Island; QUE, Quebec; SASK, Saskatchewan.

- **migrants**: Number of migrants (from source to destination) in the period 1966–1971.

- **distance**: Distance (between principal cities of provinces): NFLD, St. John; PEI, Charlottetown; NS, Halifax; NB, Fredericton; QUE, Montreal; ONT, Toronto; MAN, Winnipeg; SASK, Regina; ALTA, Edmonton; BC, Vancouver.

- **pops66**: 1966 population of source province.

- **pops71**: 1971 population of source province.

- **popd66**: 1966 population of destination province.

- **popd71**: 1971 population of destination province.

Details

There is one record in the data file for each migration stream. You can average the 1966 and 1971 population figures for each of the source and destination provinces.

Source

- Canada (1972) *Canada Year Book*. Statistics Canada [p. 1369].

References

Moore

Status, Authoritarianism, and Conformity

Description

The Moore data frame has 45 rows and 4 columns. The data are for subjects in a social-psychological experiment, who were faced with manipulated disagreement from a partner of either of low or high status. The subjects could either conform to the partner’s judgment or stick with their own judgment.

Usage

Moore

Format

This data frame contains the following columns:

- **partner.status**: Partner’s status. A factor with levels: high, low.
- **conformity**: Number of conforming responses in 40 critical trials.
- **fcategory**: F-Scale Categorized. A factor with levels (note levels out of order): high, low, medium.
- **fscore**: Authoritarianism: F-Scale score.

Source

Personal communication from J. Moore, Department of Sociology, York University.

References

Mroz

U.S. Women’s Labor-Force Participation

Description

The Mroz data frame has 753 rows and 8 columns. The observations, from the Panel Study of Income Dynamics (PSID), are married women.

Usage

Mroz
Format

This data frame contains the following columns:

- **lfp** labor-force participation; a factor with levels: no; yes.
- **k5** number of children 5 years old or younger.
- **k618** number of children 6 to 18 years old.
- **age** in years.
- **wc** wife’s college attendance; a factor with levels: no; yes.
- **hc** husband’s college attendance; a factor with levels: no; yes.
- **lwg** log expected wage rate; for women in the labor force, the actual wage rate; for women not in the labor force, an imputed value based on the regression of lwg on the other variables.
- **inc** family income exclusive of wife’s income.

Source

References

Description

These contrived repeat-measures data are taken from Table 7 of O’Brien and Kaiser (1985). The data are from an imaginary study in which 16 female and male subjects, who are divided into three treatments, are measured at a pretest, postest, and a follow-up session; during each session, they are measured at five occasions at intervals of one hour. The design, therefore, has two between-subject and two within-subject factors.

The contrasts for the treatment factor are set to \(-2, 1, 1\) and \(0, -1, 1\). The contrasts for the gender factor are set to contr.sum.

Usage

`OBrienKaiser`
Format

A data frame with 16 observations on the following 17 variables.

- **treatment** a factor with levels `control A B`
- **gender** a factor with levels `F M`
- **pre.1** pretest, hour 1
- **pre.2** pretest, hour 2
- **pre.3** pretest, hour 3
- **pre.4** pretest, hour 4
- **pre.5** pretest, hour 5
- **post.1** posttest, hour 1
- **post.2** posttest, hour 2
- **post.3** posttest, hour 3
- **post.4** posttest, hour 4
- **post.5** posttest, hour 5
- **fup.1** follow-up, hour 1
- **fup.2** follow-up, hour 2
- **fup.3** follow-up, hour 3
- **fup.4** follow-up, hour 4
- **fup.5** follow-up, hour 5

Source

Examples

```r
OBrienKaiser
contrasts(OBrienKaiser$treatment)
contrasts(OBrienKaiser$gender)
```

Description

The `Ornstein` data frame has 248 rows and 4 columns. The observations are the 248 largest Canadian firms with publicly available information in the mid-1970s. The names of the firms were not available.
Usage

Ornstein

Format

This data frame contains the following columns:

assets Assets in millions of dollars.
sector Industrial sector. A factor with levels: AGR, agriculture, food, light industry; BNK, banking; CON, construction; FIN, other financial; HLD, holding companies; MAN, heavy manufacturing; MER, merchandizing; MIN, mining, metals, etc.; TRN, transport; WOD, wood and paper.
nation Nation of control. A factor with levels: CAN, Canada; OTH, other foreign; UK, Britain; US, United States.
interlocks Number of interlocking director and executive positions shared with other major firms.

Source

Personal communication from M. Ornstein, Department of Sociology, York University.

References

Pottery

<table>
<thead>
<tr>
<th>Chemical Composition of Pottery</th>
</tr>
</thead>
</table>

Description

The data give the chemical composition of ancient pottery found at four sites in Great Britain. They appear in Hand, et al. (1994), and are used to illustrate MANOVA in the SAS Manual.

Usage

data(Pottery)

Format

A data frame with 26 observations on the following 6 variables.

Site a factor with levels AshleyRails Caldicot IsleThorns Llanedyrn
Al Aluminum
Fe Iron
Mg Magnesium
Ca Calcium
Na Sodium
Source

Examples

Pottery

Prestige

Prestige of Canadian Occupations

Description

The *Prestige* data frame has 102 rows and 6 columns. The observations are occupations.

Usage

Prestige

Format

This data frame contains the following columns:

- **education**: Average education of occupational incumbents, years, in 1971.
- **income**: Average income of incumbents, dollars, in 1971.
- **women**: Percentage of incumbents who are women.
- **prestige**: Pineo-Porter prestige score for occupation, from a social survey conducted in the mid-1960s.
- **census**: Canadian Census occupational code.
- **type**: Type of occupation. A factor with levels (note: out of order): *bc*, Blue Collar; *prof*, Professional, Managerial, and Technical; *wc*, White Collar.

Source

Personal communication from B. Blishen, W. Carroll, and C. Moore, Departments of Sociology, York University and University of Victoria.

References

Description

The Quartet data frame has 11 rows and 5 columns. These are contrived data.

Usage

Quartet

Format

This data frame contains the following columns:

- **x**: X-values for datasets 1–3.
- **y1**: Y-values for dataset 1.
- **y2**: Y-values for dataset 2.
- **y3**: Y-values for dataset 3.
- **x4**: X-values for dataset 4.
- **y4**: Y-values for dataset 4.

Source

Description

The Robey data frame has 50 rows and 3 columns. The observations are developing nations around 1990.

Usage

Robey

Format

This data frame contains the following columns:

- **region**: A factor with levels: Africa; Asia, Asia and Pacific; Latin.Amer, Latin America and Caribbean; Near.East, Near East and North Africa.
- **tfr**: Total fertility rate (children per woman).
- **contraceptors**: Percent of contraceptors among married women of childbearing age.
Source

References

SLID

Survey of Labour and Income Dynamics

Description

The SLID data frame has 7425 rows and 5 columns. The data are from the 1994 wave of the Canadian Survey of Labour and Income Dynamics, for the province of Ontario. There are missing data, particularly for wages.

Usage

SLID

Format

This data frame contains the following columns:

- **wages** Composite hourly wage rate from all jobs.
- **education** Number of years of schooling.
- **age** in years.
- **sex** A factor with levels: Female, Male.
- **language** A factor with levels: English, French, Other.

Source

The data are taken from the public-use dataset made available by Statistics Canada, and prepared by the Institute for Social Research, York University.
Sahlins

Agricultural Production in Mazulu Village

Description

The *Sahlins* data frame has 20 rows and 2 columns. The observations are households in a Central African village.

Usage

Sahlins

Format

This data frame contains the following columns:

- **consumers** Consumers/Gardener, ratio of consumers to productive individuals.
- **acres** Acres/Gardener, amount of land cultivated per gardener.

Source

Sahlins, M. (1972) *Stone Age Economics*. Aldine [Table 3.1].

References

Soils

Soil Compositions of Physical and Chemical Characteristics

Description

Soil characteristics were measured on samples from three types of contours (Top, Slope, and Depression) and at four depths (0-10cm, 10-30cm, 30-60cm, and 60-90cm). The area was divided into 4 blocks, in a randomized block design.

Usage

data(Soils)
Format

A data frame with 48 observations on the following 14 variables. There are 3 factors and 9 response variables.

Group a factor with 12 levels, corresponding to the combinations of Contour and Depth

Contour a factor with 3 levels: Depression Slope Top

Depth a factor with 4 levels: 0–10 10–30 30–60 60–90

Gp a factor with 12 levels, giving abbreviations for the groups: D0 D1 D3 D6 S0 S1 S3 S6 T0 T1 T3 T6

Block a factor with levels 1 2 3 4

pH soil pH

N total nitrogen in %

Dens bulk density in gm/cm³

P total phosphorous in ppm

Ca calcium in me/100 gm.

Mg magnesium in me/100 gm.

K phosphorous in me/100 gm.

Na sodium in me/100 gm.

Conduc conductivity

Details

These data provide good examples of MANOVA and canonical discriminant analysis in a somewhat complex multivariate setting. They may be treated as a one-way design (ignoring Block), by using either Group or Gp as the factor, or a two-way randomized block design using Block, Contour and Depth (quantitative, so orthogonal polynomial contrasts are useful).

Source

References

Examples

Soils
Description

The States data frame has 51 rows and 8 columns. The observations are the U. S. states and Washington, D. C.

Usage

States

Format

This data frame contains the following columns:

- **region** U. S. Census regions. A factor with levels: ENC, East North Central; ESC, East South Central; MA, Mid-Atlantic; MTN, Mountain; NE, New England; PAC, Pacific; SA, South Atlantic; WNC, West North Central; WSC, West South Central.
- **pop** Population: in 1,000s.
- **SATV** Average score of graduating high-school students in the state on the *verbal* component of the Scholastic Aptitude Test (a standard university admission exam).
- **SATM** Average score of graduating high-school students in the state on the *math* component of the Scholastic Aptitude Test.
- **percent** Percentage of graduating high-school students in the state who took the SAT exam.
- **dollars** State spending on public education, in $1000s per student.
- **pay** Average teacher’s salary in the state, in $1000s.

Source

References

Description

These functions produce axes for the original scale of transformed variables. Typically these would appear as additional axes to the right or at the top of the plot, but if the plot is produced with `axes=FALSE`, then these functions could be used for axes below or to the left of the plot as well.

Usage

```r
power.axis(power, base=exp(1), side=c("right", "above", "left", "below"),
at, grid=FALSE, grid.col=gray(0.5), grid.lty=3,
axis.title="Untransformed Data", cex=1, las=par("las"))

box.cox.axis(power, side=c("right", "above", "left", "below"),
at, grid=FALSE, grid.col=gray(0.5), grid.lty=3,
axis.title="Untransformed Data", cex=1, las=par("las"))

prob.axis(at, side=c("right", "above", "left", "below"), grid=FALSE, grid.lty=3,
grid.col=gray(0.5), axis.title="Probability", interval=0.1, cex=1, las=par("las"))
```

Arguments

- `power`: power for Box-Cox or power transformation.
- `side`: side at which the axis is to be drawn; numeric codes are also permitted: side = 1 for the bottom of the plot, side=2 for the left side, side = 3 for the top, side = 4 for the right side.
- `at`: numeric vector giving location of tick marks on original scale; if missing, the function will try to pick nice locations for the ticks.
- `grid`: if TRUE, grid lines for the axis will be drawn.
- `grid.col`: color of grid lines.
- `grid.lty`: line type for grid lines.
- `axis.title`: title for axis.
- `cex`: relative character expansion for axis label.
- `las`: if 0, ticks labels are drawn parallel to the axis; set to 1 for horizontal labels (see `par`).
- `base`: base of log transformation for `power.axis` when `power = 0`.
- `interval`: desired interval between tick marks on the probability scale.
Details

The transformations corresponding to the three functions are as follows:

- **power.axis**: \(x' = x^p \) for \(p \neq 0 \) and \(x' = \log x \) for \(p = 0 \).
- **box.cox.axis**: \(x' = (x^\lambda - 1)/\lambda \) for \(\lambda \neq 0 \) and \(x' = \log x \) for \(\lambda = 0 \).
- **prob.axis**: logit = \(\log[p/(1-p)] \).

These functions will try to place tick marks at reasonable locations, but producing a good-looking graph sometimes requires some fiddling with the `at` argument.

Value

These functions are used for their side effects: to draw axes.

Author(s)

John Fox (jfox@mcmaster.ca)

See Also

- `box.cox`, `logit`

Examples

```r
UN<-na.omit(UN)
attach(UN)
par(mar=c(5, 4, 4, 4)+.1)

plot(log(gdp, 10), log(infant.mortality, 10))
power.axis(0, base=10, side="above",
    at=c(50,200,500,2000,5000,20000), grid=TRUE, axis.title="GDP per capita")
power.axis(0, base=10, side="right",
    at=c(5,10,20,50,100), grid=TRUE, axis.title="infant mortality rate per 1000")

plot(box.cox(gdp, 0), box.cox(infant.mortality, 0))
box.cox.axis(0, side="above",
    grid=TRUE, axis.title="GDP per capita")
box.cox.axis(0, side="right",
    grid=TRUE, axis.title="infant mortality rate per 1000")

qq.plot(logit(infant.mortality/1000))
prob.axis()

qq.plot(logit(infant.mortality/1000))
prob.axis(c(.005, .01, .02, .04, .08, .16))
```
UN

GDP and Infant Mortality

Description

The UN data frame has 207 rows and 2 columns. The data are for 1998 and are from the United Nations; the observations are nations of the world. There are some missing data.

Usage

UN

Format

This data frame contains the following columns:

- **infant.mortality** Infant morality rate, infant deaths per 1000 live births.
- **gdp** GDP per capita, in US dollars.

Source

US.pop

Population of the United States

Description

The US.pop data frame has 21 rows and 1 columns. This is a decennial time-series, from 1790 to 1990.

Usage

US.pop

Format

This data frame contains the following columns:

- **year** Census year.
- **population** Population in millions.

Source

References

Var

Variance-Covariance Matrices (deprecated)

Description

Computes variance-covariance matrices or variances for model objects or data. The default method uses the function `var`.

These functions are now deprecated; instead, use the `vcov` function, now in the base package. Note that `vcov` has no `diagonal` argument and no default method.

Usage

```
Var(object, ...) 
```

Default S3 method:
```
Var(object, diagonal=FALSE, ...) 
```

S3 method for class 'lm':
```
Var(object, diagonal=FALSE, ...) 
```

S3 method for class 'glm':
```
Var(object, diagonal=FALSE, ...) 
```

Arguments

- `object` an object for which the covariance matrix is desired.
- `...` arguments to be passed to `var` (e.g., `na.rm`).
- `diagonal` if `TRUE`, return only the variances.

Value

A variance-covariance matrix or a vector of variances.

Author(s)

John Fox (jfox@mcmaster.ca)

See Also

`var`
Examples

data(Davis)
attach(Davis)
Var(cbind(weight, repwt), na.rm=TRUE)
weight repwt
weight 233.8781 176.1014
repwt 176.1014 189.7966

Var(lm(weight~repwt))
(Intercept) repwt
(Intercept) 9.2228211 -0.134640952
repwt -0.1346410 0.002051736

Vocab

Vocabulary and Education

Description

The Vocab data frame has 968 rows and 2 columns. The observations are respondents to the 1989 U. S. General Social Survey.

Usage

Vocab

Format

This data frame contains the following columns:

education Education, in years.

vocabulary Vocabulary test score: number correct on a 10-word test.

Source

References

Description

The Womenlf data frame has 263 rows and 4 columns. The data are from a 1977 survey of the Canadian population.

Usage

Womenlf

Format

This data frame contains the following columns:

- **partic** Labour-Force Participation. A factor with levels (note: out of order): *fulltime*, Working full-time; *not.work*, Not working outside the home; *parttime*, Working part-time.
- **hincome** Husband's income, $1000s.
- **children** Presence of children in the household. A factor with levels: *absent*, *present*.
- **region** A factor with levels: *Atlantic*, Atlantic Canada; *BC*, British Columbia; *Ontario*; *Prairie*, Prairie provinces; *Quebec*.

Source

Social Change in Canada Project. York Institute for Social Research.

References

Description

These functions construct added-variable (also called partial-regression) plots for linear and generalized linear models.
Usage

```r
av.plots(model, variable, ask=missing(variable), one.page=!ask, ...)  

avp(...)  

av.plot(model, ...)  

## S3 method for class 'lm':  
av.plot(model, variable,  
  labels=names(residuals(model)[!is.na(residuals(model))]),  
  identify.points=TRUE, las=par("las"), col=palette()[2], pch=1, lwd=2,  
  main="Added-Variable Plot", ...)  

## S3 method for class 'glm':  
av.plot(model, variable,  
  labels=names(residuals(model)[!is.na(residuals(model))]),  
  identify.points=TRUE, las=par("las"), col=palette()[2], pch=1, lwd=2,  
  main="Added-Variable Plot", type=c("Wang", "Weisberg"), ...)  
```

Arguments

- `model`: model object produced by `lm` or `glm`.
- `variable`: variable (if it exists in the search path) or name of variable. This argument usually is omitted for `avp` or `av.plots`.
- `ask`: if `TRUE`, a menu is provided in the R Console for the user to select the term(s) to plot.
- `one.page`: if `TRUE` (and `ask=FALSE`), put all plots on one graph.
- `labels`: observation names.
- `identify.points`: if `TRUE`, then identify points interactively.
- `las`: if 0, ticks labels are drawn parallel to the axis; set to 1 for horizontal labels (see `par`).
- `col`: color for points and lines; the default is the second entry in the current color palette (see `palette` and `par`).
- `pch`: plotting character for points; default is 1 (a circle, see `par`).
- `lwd`: line width; default is 2 (see `par`).
- `main`: title for plot.
- `type`: if "Wang" use the method of Wang (1985); if "Weisberg" use the method in the Arc software associated with Cook and Weisberg (1999).
- `...`: arguments to be passed down to `av.plot.lm` or `av.plot.glm`.

Details

The function intended for direct use is `av.plots` (for which `avp` is an abbreviation). By default, these functions are used interactively through a text menu.
The model can contain factors and interactions. An added-variable plot can be drawn for each column of the model matrix, including the constant.

Value

`NULL`. These functions are used for their side effect: producing plots.

Author(s)

John Fox (jfox@mcmaster.ca)

References

See Also

`cr.plots`, `ceres.plots`, `leverage.plots`

Examples

```r
## Not run:
av.plots(lm(prestige~income+education+type, data=Duncan))

av.plots(glm(partic != "not.work" ~ hincome + children,
data=Womenlf, family=binomial))
## End(Not run)
```

box.cox

Box-Cox Family of Transformations

Description

Compute the Box-Cox power transformation of a variable.

Usage

```r
box.cox(x, p, start=0)
bc(x, p, ...)
```
Arguments

- **x**: numeric vector to transform.
- **p**: power \((0 = \log) \); if \(p \) is a vector then a matrix of transformed values with columns labelled by powers will be returned.
- **start**: constant to be added to each value of \(x \) prior to transformation.
- ... argument passed down.

Details

Computes \(x' = (x^p - 1)/p \) for \(p \neq 0 \) and \(x' = \log x \) for \(p = 0 \).

The values of \(x \) must all be positive; if not, a **start** should be added to each value to make all the values positive. The function will automatically compute the **start** and print a warning, if necessary.

bc is just an abbreviation for **box.cox**.

Value

- a vector or matrix of transformed values.

Warning

These functions do not compute the maximum-likelihood estimate for a Box-Cox normalizing transformation. See **box.cox.powers** for estimating unconditional univariate and multivariate Box-Cox transformations, and **boxcox** in the M**ASS** package for estimating the Box-Cox transformation of the response in a linear model.

Author(s)

John Fox (jfox@mcmaster.ca)

References

See Also

boxcox, box.cox.var, box.cox.powers, box.cox.axis

Examples

```r
box.cox(1:10, 2)
## [1] 0.0 1.5 4.0 7.5 12.0 17.5 24.0 31.5 40.0 49.5

box.cox(1:5, c(0,2))
##     0  2
## [1,] 0.000000 0.0
```


box.cox(-5:5, 2)
[1] 0.0 1.5 4.0 7.5 12.0 17.5 24.0 31.5 40.0 49.5 60.0
Warning message:
start = 6 added to data prior to transformation in: box.cox(-5:5, 2)

options(digits=4)
box.cox(-5:5, 0, start=6)
[1] 0.0000 0.6931 1.0986 1.3863 1.6094 1.7918 1.9459 2.0794 2.1972
[10] 2.3026 2.3979

box.cox.powers

Multivariate Unconditional Box-Cox Transformations

Description

Estimates multivariate unconditional power transformations to multinormality by the method of maximum likelihood. The univariate case is obtained when only one variable is specified.

Usage

```r
box.cox.powers(X, start=NULL, hypotheses=NULL, ...)
```

Arguments

- `X`
 a numeric matrix of variables (or a vector for one variable) to be transformed.
- `start`
 start values for the power transformation parameters; if NULL (the default), univariate Box-Cox transformations will be computed and used as the start values.
- `hypotheses`
 if non-NULL, a list of hypotheses to be tested; each hypothesis should be a vector of values giving the power for each column of `X`. Note that the hypotheses that all powers are 1 and that all powers are 0 (log) are always tested.
- `...`
 optional arguments to be passed to the `optim` function.
- `digits`
 number of places to round result.
- `x, object`
 `box.cox.powers` object.
Details

Note that this is *unconditional* Box-Cox. That is, there is no regression model, and there are no predictors. The object is to make the distribution of the variable(s) as (multi)normal as possible. For Box-Cox regression, see the `boxcox` function in the `MASS` package.

The function estimates the Box-Cox powers, \(x_j' = (x_j^\lambda - 1)/\lambda \) for \(\lambda_j \neq 0 \) and \(x_j' = \log x_j \) for \(\lambda_j = 0 \). Subsequently using ordinary power transformations (i.e., \(x^p \) for \(p \neq 0 \)) achieves the same result.

Value

returns an object of class `box.cox.powers`, which may be printed or summarized. The `print` and `summary` methods are now identical; I’ve retained the latter for backwards compatibility.

Author(s)

John Fox (jfox@mcmaster.ca)

References

See Also

`boxcox`, `box.cox`, `box.cox.var`, `box.cox.axis`

Examples

```
attach(Prestige)
box.cox.powers(cbind(income, education))
## Box-Cox Transformations to Multinormality
##
##    Est.Power Std.Err. Wald(Power=0) Wald(Power=1)
## income     0.2617  0.1014      2.580    -7.280
## education  0.4242  0.4033      1.052    -1.428
##
## L.R. test, all powers = 0:  7.694 df = 2 p = 0.0213
## L.R. test, all powers = 1: 48.8727 df = 2 p = 0

plot(income, education)
plot(box.cox(income, .26), box.cox(education, .42))
```

```
box.cox.powers(income)
## Box-Cox Transformation to Normality
##
##    Est.Power Std.Err. Wald(Power=0) Wald(Power=1)
##           0.1793  0.1108   1.618    -7.406
##
## L.R. test, power = 0:  2.7103 df = 1 p = 0.0997
## L.R. test, power = 1: 47.261 df = 1 p = 0
```
qq.plot(income)
qq.plot(income^.18)

box.cox.var

Description

Computes a constructed variable for the Box-Cox transformation of the response variable in a linear model.

Usage

```r
box.cox.var(y)
```

Arguments

- `y`: response variable.

Details

The constructed variable is defined as $y[\log(y/\tilde{y}) - 1]$, where \tilde{y} is the geometric mean of y.

The constructed variable is meant to be added to the right-hand-side of the linear model. The t-test for the coefficient of the constructed variable is an approximate score test for whether a transformation is required.

If b is the coefficient of the constructed variable, then an estimate of the normalizing power transformation based on the score statistic is $1 - b$. An added-variable plot for the constructed variable shows leverage and influence on the decision to transform y.

Value

a numeric vector of the same length as y.

Author(s)

John Fox (jfox@mcmaster.ca)

References

See Also

`boxcox`, `box.cox`, `box.cox.powers`, `box.cox.axis`, `av.plots`
Examples

```r
mod <- lm(interlocks + 1 ~ assets, data=Ornstein)
mod.aux <- update(mod, . ~ . + box.cox.var(interlocks + 1))
summary(mod.aux)
## Call:
## lm(formula = interlocks + 1 ~ assets + box.cox.var(interlocks + 1), data = Ornstein)
## ## Residuals:
##    Min     1Q    Median     3Q    Max
## -23.189  -6.701     0.541   6.773  12.051
## ## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.461e+01  5.426e-01  26.920 <2e-16
## assets    -7.142e-05  5.119e-05  -1.395  0.164
## box.cox.var(interlocks + 1) 7.427e-01  4.136e-02  17.956 <2e-16
## ## Residual standard error: 7.247 on 245 degrees of freedom
## Multiple R-Squared: 0.7986, Adjusted R-squared: 0.797
## F-statistic: 485.7 on 2 and 245 degrees of freedom, p-value: 0
``` 

box.tidwell

Box-Tidwell Transformations

Description

Computes the Box-Tidwell power transformations of the predictors in a linear model.

Usage

```r
box.tidwell(y, ...)
```

S3 method for class 'formula'
```r
box.tidwell(formula, other.x=NULL, data=NULL, subset,
    na.action=options()$na.action, verbose=FALSE, tol=0.001,
    max.iter=25, ...)
```

Default S3 method:
```r
box.tidwell(y, x1, x2=NULL, max.iter=25, tol=0.001,
    verbose=FALSE, ...)
```

S3 method for class 'box.tidwell'
```r
print(x, digits, ...)
```
Arguments

formula two-sided formula, the right-hand-side of which gives the predictors to be transformed.
other.x one-sided formula giving the predictors that are not candidates for transformation, including (e.g.) factors.
data an optional data frame containing the variables in the model. By default the variables are taken from the environment from which box.tidwell is called.
subset an optional vector specifying a subset of observations to be used.
na.action a function that indicates what should happen when the data contain NAs. The default is set by the na.action setting of options.
verbose if TRUE a record of iterations is printed.
tol if maximum relative change in coefficients is less than tol then convergence is declared.
max.iter maximum number of iterations.
y response variable.
x1 matrix of predictors to transform.
x2 matrix of predictors that are not candidates for transformation.
... not for the user.
x box.tidwell object.
digits number of digits for rounding.

Details

The maximum-likelihood estimates of the transformation parameters are computed by Box and Tidwell’s (1962) method, which is usually more efficient than using a general nonlinear least-squares routine for this problem. Score tests for the transformations are also reported.

Value

an object of class box.tidwell, which is normally just printed.

Author(s)

John Fox (jfox@mcmaster.ca)

References

Examples

```r
box.tidwell(prestige~income+education, ~ poly(women,2), data=Prestige)
```

```r
## income education
## Initial Power -0.91030 2.24354
## Score Statistic -5.30129 2.40556
## p-value 0.00000 0.01615
## MLE of Power -0.03777 2.19283
```

car-internal Internal car functions

Description

Internal functions for package car.

Usage

```r
df.terms(model, term, ...)
## Default S3 method:
df.terms(model, term, ...)
## S3 method for class 'multinom':
df.terms(model, term, ...)
## S3 method for class 'polr':
df.terms(model, term, ...)
has.intercept(model, ...)
## Default S3 method:
has.intercept(model, ...)
inv(x)
is.aliased(model)
mfrow(n, max.plots=0)
nice(x, direction=c("round", "down", "up"))
predictor.names(model, ...)
## Default S3 method:
predictor.names(model, ...)
relatives(term, names, factors)
responseName(model, ...)
## S3 method for class 'chisq.test':
print(x, ...)
## Default S3 method:
responseName(model, ...)
response(model, ...)
## Default S3 method:
response(model, ...)
term.names(model, ...)
## Default S3 method:
term.names(model, ...)
```
Arguments

model
term
...
x
n
max.plots
direction
names
factors

Details

These functions are not intended to be called by the user.

Author(s)

John Fox (jfox@mcmaster.ca)

Description

This package accompanies J. Fox, An R and S-PLUS Companion to Applied Regression, Sage, 2002. The package contains mostly functions for applied regression, linear models, and generalized linear models, with an emphasis on regression diagnostics, particularly graphical diagnostic methods. There are also some utility functions. With some exceptions, I have tried not to duplicate capabilities in the basic distribution of R, nor in widely used packages. Where relevant, the functions in car are consistent with na.action = na.omit or na.exclude.

Details

Package: car
Version: 1.2-7
Date: 2007/10/27
Depends: R (>= 2.1.1), stats, graphics
Suggests: MASS, nnet, leaps
License: GPL (>= 2)
URL: http://www.r-project.org, http://socserv.socsci.mcmaster.ca/jfox/

Index:
Adler Experimenter Expectations
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>box.cox</td>
<td>Box-Cox Family of Transformations</td>
</tr>
<tr>
<td>box.cox.powers</td>
<td>Multivariate Unconditional Box-Cox Transformations</td>
</tr>
<tr>
<td>box.cox.var</td>
<td>Constructed Variable for Box-Cox Transformation</td>
</tr>
<tr>
<td>box.tidwell</td>
<td>Box-Tidwell Transformations</td>
</tr>
<tr>
<td>ceres.plots</td>
<td>Ceres Plots</td>
</tr>
<tr>
<td>cookd</td>
<td>Cook's Distances for Linear and Generalized Linear Models</td>
</tr>
<tr>
<td>cr.plots</td>
<td>Component+Residual (Partial Residual) Plots</td>
</tr>
<tr>
<td>durbin.watson</td>
<td>Durbin-Watson Test for Autocorrelated Errors</td>
</tr>
<tr>
<td>ellipse</td>
<td>Ellipses, Data Ellipses, and Confidence Ellipses</td>
</tr>
<tr>
<td>hccm</td>
<td>Heteroscedasticity-Corrected Covariance Matrices</td>
</tr>
<tr>
<td>influencePlot</td>
<td>Regression Influence Plot</td>
</tr>
<tr>
<td>inv</td>
<td>Internal car functions</td>
</tr>
<tr>
<td>levene.test</td>
<td>Levene's Test</td>
</tr>
<tr>
<td>leverage.plots</td>
<td>Regression Leverage Plots</td>
</tr>
<tr>
<td>linear.hypothesis</td>
<td>Test Linear Hypothesis</td>
</tr>
<tr>
<td>logit</td>
<td>Logit Transformation</td>
</tr>
<tr>
<td>n.bins</td>
<td>Number of Bins for Histogram</td>
</tr>
<tr>
<td>ncv.test</td>
<td>Score Test for Non-Constant Error Variance</td>
</tr>
<tr>
<td>outlier.test</td>
<td>Bonferroni Outlier Test</td>
</tr>
<tr>
<td>panel.car</td>
<td>Panel Function Coplots</td>
</tr>
<tr>
<td>power.axis</td>
<td>Axes for Transformed Variables</td>
</tr>
<tr>
<td>qq.plot</td>
<td>Quantile-Comparison Plots</td>
</tr>
<tr>
<td>recode</td>
<td>Recode a Variable</td>
</tr>
<tr>
<td>reg.line</td>
<td>Plot Regression Line</td>
</tr>
<tr>
<td>scatterplot</td>
<td>Scatterplots with Boxplots</td>
</tr>
<tr>
<td>scatterplot.matrix</td>
<td>Scatterplot Matrices</td>
</tr>
<tr>
<td>some</td>
<td>Sample a Few Elements of an Object</td>
</tr>
<tr>
<td>spread.level.plot</td>
<td>Spread-Level Plots</td>
</tr>
<tr>
<td>subsets</td>
<td>Plot Output from regsubsets Function in leaps package</td>
</tr>
<tr>
<td>symbox</td>
<td>Boxplots for transformations to symmetry</td>
</tr>
<tr>
<td>vif</td>
<td>Variance Inflation Factors</td>
</tr>
<tr>
<td>which.names</td>
<td>Position of Row Names</td>
</tr>
</tbody>
</table>

Author(s)

John Fox <jfox@mcmaster.ca>. I am grateful to Douglas Bates, David Firth, Michael Friendly, Gregor Gorjanc, Spencer Graves, Richard Heiberger, Georges Monette, Henric Nilsson, Brian Ripley, Sanford Weisberg, and Achim Zeleis for various suggestions and contributions.

Maintainer: John Fox <jfox@mcmaster.ca>
ceres.plots Ceres Plots

Description

These functions calculate Ceres plots for linear and generalized linear model.

Usage

ceres.plots(model, variable, ask=missing(variable), one.page=!ask,
 span=0.5, ...)

ceres.plot(model, ...)

S3 method for class 'lm':
ceres.plot(model, variable, line=TRUE, smooth=TRUE, span=0.5, iter,
 las=par('las'), col=palette()[2], pch=1, lwd=2, main="Ceres Plot", ...)

S3 method for class 'glm':
ceres.plot(model, ...)

Arguments

model model object produced by lm or glm.
variable variable (if it exists in the search path) or name of variable. This argument
 usually is omitted for ceres.plots.
ask if TRUE, a menu is provided in the R Console for the user to select the variable(s)
 to plot, and to modify the span for the smoother used to draw a nonparametric-
 regression line on the plot.
one.page if TRUE (and ask=FALSE), put all plots on one graph.
span span for lowess smoother.
iter number of robustness iterations for nonparametric-regression smooth; defaults
to 3 for a linear model and to 0 for a non-Gaussian glm.
line TRUE to plot least-squares line.
smooth TRUE to plot nonparametric-regression (lowess) line.
las if 0, ticks labels are drawn parallel to the axis; set to 1 for horizontal labels (see
 par).
col color for points and lines; the default is the second entry in the current color
 palette (see palette and par).
pch plotting character for points; default is 1 (a circle, see par).
lwd line width; default is 2 (see par).
main title for plot.
... pass arguments down.
Details

Ceres plots are a generalization of component+residual (partial residual) plots that are less prone to leakage of nonlinearity among the predictors.

The function intended for direct use is `ceres.plots`. By default, this function is used interactively through a text menu.

The model cannot contain interactions, but can contain factors. Factors may be present in the model, but Ceres plots cannot be drawn for them.

Value

`NULL`. These functions are used for their side effect: producing plots.

Author(s)

John Fox (jfox@mcmaster.ca)

References

See Also

cr.plots, av.plots

Examples

```r
## Not run:
ceres.plots(lm(prestige~income+education+type, data=Prestige))
## End(Not run)
```

Cook’s Distances

Cook’s Distances for Linear and Generalized Linear Models

Description

This function now simply calls `cooks.distance` in the base package.

Usage

```r
cookd(model, ...)
```

Arguments

- `model` `lm` or `glm` model object.
- `...` other arguments to be passed to `cooks.distance`.
Details

Cook’s distances for generalized linear models are approximations, as described in Williams (1987) (except that the Cook’s distances are scaled as F rather than as chi-square values).

This function is retained primarily for consistency with An R and S-PLUS Companion to Applied Regression. Other deletion diagnostics formerly in the car package have been rewritten and moved to the base package; these include influence, rstudent, hatvalues, dfbeta, and dfbetas.

Value

cookd returns a vector with one entry for each observation.

Author(s)

John Fox (jfox@mcmaster.ca)

References

See Also

cooks.distance, influence

Examples

plot(cookd(lm(prestige ~ income + education, data=Duncan)))

cr.plots

Component+Residual (Partial Residual) Plots

Description

These functions construct component+residual plots (also called partial-residual plots) for linear and generalized linear models.
Usage

```r
cr.plots(model, variable, ask=missing(variable), one.page=!ask, span=0.5, ...)
crp(...) 
cr.plot(model, ...)
```

```r
## S3 method for class 'lm':
cr.plot(model, variable, order=1, line=TRUE, smooth=TRUE, iter, span=0.5, las=par('las'), col=palette()[2], pch=1, lwd=2, main="Component+Residual Plot", ...)

## S3 method for class 'glm':
cr.plot(model, ...)
```

Arguments

- `model`: model object produced by `lm` or `glm`.
- `variable`: variable (if it exists in the search path) or name of variable. This argument usually is omitted for `crp` or `cr.plots`.
- `ask`: if `TRUE`, a menu is provided in the R Console for the user to select the variable(s) to plot, and to modify the span for the smoother used to draw a nonparametric-regression line on the plot.
- `one.page`: if `TRUE` (and `ask=FALSE`), put all plots on one graph.
- `order`: order of polynomial regression performed for predictor to be plotted.
- `line`: `TRUE` to plot least-squares line.
- `smooth`: `TRUE` to plot nonparametric-regression (lowess) line.
- `iter`: number of robustness iterations for nonparametric-regression smooth; defaults to 3 for a linear model and to 0 for a non-Gaussian glm.
- `span`: span for lowess smoother.
- `las`: if 0, ticks labels are drawn parallel to the axis; set to 1 for horizontal labels (see `par`).
- `col`: color for points and lines; the default is the second entry in the current color palette (see `palette` and `par`).
- `pch`: plotting character for points; default is 1 (a circle, see `par`).
- `lwd`: line width; default is 2 (see `par`).
- `main`: title for plot.
- `...`: pass arguments down.

Details

The function intended for direct use is `cr.plots` (for which `crp` is an abbreviation). By default, these functions are used interactively through a text menu.

The model cannot contain interactions, but can contain factors. Parallel boxplots of the partial residuals are drawn for the levels of a factor.
Value

NULL. These functions are used for their side effect: producing plots.

Author(s)

John Fox (jfox@mcmaster.ca)

References

See Also
ceres.plots, av.plots

durbin.watson

Durbin-Watson Test for Autocorrelated Errors

Description

Computes residual autocorrelations and generalized Durbin-Watson statistics and their bootstrapped p-values.

Usage

durbin.watson(model, ...)

S3 method for class 'lm':
durbin.watson(model, max.lag=1, simulate=TRUE, reps=1000,
 method=c("resample","normal"),
 alternative=c("two.sided", "positive", "negative"), ...)

Default S3 method:
durbin.watson(model, max.lag=1, ...)

S3 method for class 'durbin.watson':
print(x, ...)
Arguments

model: a linear-model object, or a vector of residuals from a linear model.
max.lag: maximum lag to which to compute residual autocorrelations and Durbin-Watson statistics.
simulate: if TRUE p-values will be estimated by bootstrapping.
reps: number of bootstrap replications.
method: bootstrap method: "resample" to resample from the observed residuals; "normal" to sample normally distributed errors with 0 mean and standard deviation equal to the standard error of the regression.
alternative: sign of autocorrelation in alternative hypothesis; specify only if max.lag = 1; if max.lag > 1, then alternative is taken to be "two.sided".
...: arguments to be passed down to method functions.
x: durbin.watson object.

Value

Returns an object of type "durbin.watson".

Author(s)

John Fox (jfox@mcmaster.ca)

References

Examples

durbin.watson(lm(fconvict ~ tfr + partic + degrees + mconvict, data=Hartnagel))
lag Autocorrelation D-W Statistic p-value
1 0.688345 0.6168636 0
Alternative hypothesis: rho != 0

hccm

Heteroscedasticity-Corrected Covariance Matrices

Description

Calculates heteroscedasticity-corrected covariance matrices for unweighted linear models. These are also called “White-corrected” covariance matrices.
Usage

```
usage <- function () {
  cat(c("hccm(model, ...)

  ## S3 method for class 'lm':
  hccm(model, type=c("hc3", "hc0", "hc1", "hc2", "hc4"), ...)

  ## Default S3 method:
  hccm(model, ...)
```

Arguments

- **model**: an unweighted linear model, produced by `lm`.
- **type**: one of "hc0", "hc1", "hc2", "hc3", or "hc4"; the first of these gives the classic White correction. The "hc1", "hc2", and "hc3" corrections are described in Long and Ervin (2000); "hc4" is described in Cribari-Neto (2004).
- ... arguments to pass to `hccm.lm`.

Details

The classical White-corrected coefficient covariance matrix ("hc0") is

\[
V(b) = (X'X)^{-1}X'diag(e_i^2)X(X'X)^{-1}
\]

where \(e_i^2 \) are the squared residuals, and \(X \) is the model matrix. The other methods represent adjustments to this formula.

The function `hccm.default` simply catches non-`lm` objects.

Value

The heteroscedasticity-corrected covariance matrix for the model.

Author(s)

John Fox (jfox@mcmaster.ca)

References

See Also

- `ncv.test`, `spread.level.plot`
Examples

```r
options(digits=4)
mod<-lm(interlocks~assets+nation, data=Ornstein)
Var(mod)
## (Intercept) assets nationOTH nationUK nationUS
## (Intercept) 1.079e+00 -1.588e-05 -1.037e+00 -1.057e+00 -1.032e+00
## assets -1.588e-05 1.642e-09 1.155e-05 1.362e-05 1.109e-05
## nationOTH -1.037e+00 1.155e-05 7.019e+00 1.021e+00 1.003e+00
## nationUK -1.057e+00 1.362e-05 1.021e+00 7.405e+00 1.017e+00
## nationUS -1.032e+00 1.109e-05 1.003e+00 1.017e+00 2.128e+00
hccm(mod)
## (Intercept) assets nationOTH nationUK nationUS
## (Intercept) 1.664e+00 -3.957e-05 -1.569e+00 -1.611e+00 -1.572e+00
## assets -3.957e-05 6.752e-09 2.275e-05 3.051e-05 2.231e-05
## nationOTH -1.569e+00 2.275e-05 8.209e+00 1.539e+00 1.520e+00
## nationUK -1.611e+00 3.051e-05 1.539e+00 4.476e+00 1.543e+00
## nationUS -1.572e+00 2.231e-05 1.520e+00 1.543e+00 1.946e+00
```

influencPlot
Regression Influence Plot

Description

This function creates a "bubble" plot of studentized residuals by hat values, with the areas of the circles representing the observations proportional to Cook’s distances. Vertical reference lines are drawn at twice and three times the average hat value, horizontal reference lines at -2, 0, and 2 on the studentized-residual scale.

Usage

```r
influencePlot(model, ...)  
## S3 method for class 'lm':  
influencePlot(model, scale = 10, col = c(1, 2), labels = names(rstud),  
   identify.cex=par("cex"), identify.col=par("col"), ...)  
```

Arguments

- `model` a linear or generalized-linear model.
- `scale` a factor to adjust the size of the circles.
- `col` colors for plotting points that do not and do have noteworthy Cook’s distances.
- `labels` if `FALSE` do not identify points interactively with the mouse; otherwise a vector of observation labels.
- `identify.cex, identify.col` arguments to be passed to `identify`.
- `...` arguments to pass to the `plot` function.
levene.test

Value

Returns the indices of identified points.

Note

This function used to be named influence.plot; the name was changed to avoid confusion with the influence generic function.

Author(s)

John Fox (jfox@mcmaster.ca)

References

See Also

cookd, rstudent, hatvalues

Examples

Not run:
influencePlot(lm(prestige ~ income + education, data=Duncan))

End(Not run)

levene.test Levene’s Test

Description

Computes Levene’s test for homogeneity of variance across groups.

Usage

levene.test(y, group)

Arguments

y response variable.

group factor defining groups.

Value

returns an object meant to be printed showing the results of the test.
Note
adapted from a response posted by Brian Ripley to the R-help email list.

Author(s)
John Fox ⟨jfox@mcmaster.ca⟩

References

Examples
attach(Moore)
levene.test(conformity, fcategory)
Levene's Test for Homogeneity of Variance
Df F value Pr(>F)
group 2 0.046 0.9551
42
levene.test(conformity, interaction(fcategory, partner.status))
Levene's Test for Homogeneity of Variance
Df F value Pr(>F)
group 5 1.4694 0.2219
39

leverage.plots Regression Leverage Plots

Description
These functions display a generalization, due to Sall (1990), of added-variable plots to multiple-df terms in a linear model. When a term has just 1 df, the leverage plot is a rescaled version of the usual added-variable (partial-regression) plot.

Usage
leverage.plots(model, term.name, ask=missing(term.name), ...)

leverage.plot(model, ...)

S3 method for class 'lm':
leverage.plot(model, term.name,
 labels=names(residuals(model)[!is.na(residuals(model))]),
 identify.points=TRUE, las=par('las'), col=palette()[2], pch=1, lwd=2,
 main="Leverage Plot", ...)

S3 method for class 'glm':
leverage.plot(model, ...)
leverage.plots

Arguments

- **model**: model object produced by `lm`
- **term.name**: name of term in the model to be plotted; this argument is usually omitted for `leverage.plots`.
- **ask**: if `TRUE`, a menu is provided in the R Console for the user to select the term(s) to plot.
- **labels**: observation names.
- **identify.points**: if `TRUE`, then identify points interactively.
- **las**: if 0, ticks labels are drawn parallel to the axis; set to 1 for horizontal labels (see `par`).
- **col**: color for points and lines; the default is the second entry in the current color palette (see `palette` and `par`).
- **pch**: plotting character for points; default is 1 (a circle, see `par`).
- **lwd**: line width; default is 2 (see `par`).
- **main**: title for plot.
- **...**: arguments passed down to method functions.

Details

The function intended for direct use is `leverage.plots`. By default, this function is used interactively through a text menu.

The model can contain factors and interactions. A leverage plot can be drawn for each term in the model, including the constant.

`leverage.plot.glm` is a dummy function, which generates an error message.

Value

`NULL`. These functions are used for their side effect: producing plots.

Author(s)

John Fox (jfox@mcmaster.ca)

References

See Also

`av.plots`
Examples

```r
## Not run:
leverage.plots(lm(prestige~(income+education)*type, data=Duncan))
## End(Not run)
```

linear.hypothesis
Test Linear Hypothesis

Description

Generic function for testing a linear hypothesis, and methods for linear models, generalized linear models, multivariate linear models, and other models that have methods for `coef` and `vcov`.

Usage

```r
linear.hypothesis(model, ...)
```

```r
lht(model, ...)
```

```r
## Default S3 method:
linear.hypothesis(model, hypothesis.matrix, rhs=NULL,
   test=c("Chisq", "F"), vcov.=NULL, verbose=FALSE, ...)
```

```r
## S3 method for class 'lm':
linear.hypothesis(model, hypothesis.matrix, rhs=NULL,
   test=c("F", "Chisq"), vcov.=NULL, white.adjust=FALSE, ...)
```

```r
## S3 method for class 'glm':
linear.hypothesis(model, ...)
```

```r
## S3 method for class 'mlm':
linear.hypothesis(model, hypothesis.matrix, rhs=NULL, SSPE, V,
   test, idata, icontрастs=c("contr.sum", "contr.poly"), idesign, itermS,
   P=NULL, title="", verbose=FALSE, ...)
```

```r
## S3 method for class 'linear.hypothesis.mlm':
print(x, SSP=TRUE, SSPE=SSP,
   digits=unlist(options("digits")), ...)
```

Arguments

- `model`
 Fitted model object. The default method works for models for which the estimated parameters can be retrieved by `coef` and the corresponding estimated covariance matrix by `vcov`. See the Details for more information.
hypothesis.matrix
matrix (or vector) giving linear combinations of coefficients by rows, or a character vector giving the hypothesis in symbolic form (see Details).

rhs
right-hand-side vector for hypothesis, with as many entries as rows in the hypothesis matrix; can be omitted, in which case it defaults to a vector of zeroes. For a multivariate linear model, rhs is a matrix, defaulting to 0.
idata
an optional data frame giving a factor or factors defining the intra-subject model for multivariate repeated-measures data. See Details for an explanation of the intra-subject design and for further explanation of the other arguments relating to intra-subject factors.
icontrasts
names of contrast-generating functions to be applied by default to factors and ordered factors, respectively, in the within-subject “data”; the contrasts must produce an intra-subject model matrix in which different terms are orthogonal.
idesign
a one-sided model formula using the “data” in idata and specifying the intra-subject design.
iterms
the quoted name of a term, or a vector of quoted names of terms, in the intra-subject design to be tested.
P
transformation matrix to be applied to the repeated measures in multivariate repeated-measures data; if NULL and no intra-subject model is specified, no response-transformation is applied; if an intra-subject model is specified via the idata, idesign, and (optionally) icontrasts arguments, then P is generated automatically from the iterms argument.
SSPE
in linear.hypothesis method for mlm objects: optional error sum-of-squares-and-products matrix; if missing, it is computed from the model. In print method for linear.hypothesis.mlm objects: if TRUE, print the sum-of-squares and cross-products matrix for error.
test
character string, "F" or "Chisq", specifying whether to compute the finite-sample F statistic (with approximate F distribution) or the large-sample Chi-squared statistic (with asymptotic Chi-squared distribution). For a multivariate linear model, the multivariate test statistic to report — one of "Pillai", "Wilks", "Hotelling-Lawley", or "Roy", with "Pillai" as the default.
title
an optional character string to label the output.
V
inverse of sum of squares and products of the model matrix; if missing it is computed from the model.
vcov.
a function for estimating the covariance matrix of the regression coefficients, e.g., hccm, or an estimated covariance matrix for model. See also white.adjust.
white.adjust
logical or character. Convenience interface to hccm (instead of using the argument vcov). Can be set either to a character specifying the type argument of hccm or TRUE, in which case "hc3" is used implicitly. For backwards compatibility.
verbose
If TRUE, the hypothesis matrix and right-hand-side vector (or matrix) are printed to standard output; if FALSE (the default), the hypothesis is only printed in symbolic form.
x
an object produced by linear.hypothesis.mlm.
linear.hypothesis

SSP if TRUE (the default), print the sum-of-squares and cross-products matrix for the hypothesis and the response-transformation matrix.

digits minimum number of significant digits to print.

... arguments to pass down.

Details

Computes either a finite sample F statistic or asymptotic Chi-squared statistic for carrying out a Wald-test-based comparison between a model and a linearly restricted model. The default method will work with any model object for which the coefficient vector can be retrieved by coef and the coefficient-covariance matrix by vcov (otherwise the argument vcov has to be set explicitly). For computing the F statistic (but not the Chi-squared statistic) a df.residual method needs to be available. If a formula method exists, it is used for pretty printing.

The method for "lm" objects calls the default method, but it changes the default test to "F", supports the convenience argument white.adjust (for backwards compatibility), and enhances the output by residual sums of squares. For "glm" objects just the default method is called (bypassing the "lm" method).

The function lht also dispatches to linear.hypothesis.

The hypothesis matrix can be supplied as a numeric matrix (or vector), the rows of which specify linear combinations of the model coefficients, which are tested equal to the corresponding entries in the righthand-side vector, which defaults to a vector of zeroes.

Alternatively, the hypothesis can be specified symbolically as a character vector with one or more elements, each of which gives either a linear combination of coefficients, or a linear equation in the coefficients (i.e., with both a left and right side separated by an equals sign). Components of a linear expression or linear equation can consist of numeric constants, or numeric constants multiplying coefficient names (in which case the number precedes the coefficient, and may be separated from it by spaces or an asterisk); constants of 1 or -1 may be omitted. Spaces are always optional. Components are separated by plus or minus signs. See the examples below.

A linear hypothesis for a multivariate linear model (i.e., an object of class "mlm") can optionally include an intra-subject transformation matrix for a repeated-measures design. If the intra-subject transformation is absent (the default), the multivariate test concerns all of the corresponding coefficients for the response variables. There are two ways to specify the transformation matrix for the repeated measures:

1. The transformation matrix can be specified directly via the P argument.

2. A data frame can be provided defining the repeated-measures factor or factors via idata, with default contrasts given by the icontrasts argument. An intra-subject model-matrix is generated from the one-sided formula specified by the idesign argument; columns of the model matrix corresponding to different terms in the intra-subject model must be orthogonal (as is insured by the default contrasts). Note that the contrasts given in icontrasts can be overridden by assigning specific contrasts to the factors in idata. The repeated-measures transformation matrix consists of the columns of the intra-subject model matrix corresponding to the term or terms in iters. In most instances, this will be the simpler approach, and indeed, most tests of interests can be generated automatically via the Anova function.
linear.hypothesis

Value

For a univariate model, an object of class "anova" which contains the residual degrees of freedom in the model, the difference in degrees of freedom, Wald statistic (either "F" or "Chisq") and corresponding p value.

For a multivariate linear model, an object of class "linear.hypothesis.mlm", which contains sums-of-squares-and-product matrices for the hypothesis and for error, degrees of freedom for the hypothesis and error, and some other information.

The returned object normally would be printed.

Author(s)

Achim Zeileis and John Fox (jfox@mcmaster.ca)

References

See Also

anova, Anova, waldtest, hccm, vcovHC, vcovHAC, coef, vcov

Examples

mod.davis <- lm(weight ~ repwt, data=Davis)

the following are equivalent:
linear.hypothesis(mod.davis, diag(2), c(0,1))
linear.hypothesis(mod.davis, c("(Intercept)" = 0", "repwt = 1")
linear.hypothesis(mod.davis, c("(Intercept)", "repwt"), c(0,1))
linear.hypothesis(mod.davis, c("(Intercept)", "repwt = 1")

use asymptotic Chi-squared statistic
linear.hypothesis(mod.davis, c("(Intercept) = 0", "repwt = 1"), test = "Chisq")

the following are equivalent:
use HC3 standard errors via white.adjust option
linear.hypothesis(mod.davis, c("(Intercept) = 0", "repwt = 1"),
 white.adjust = TRUE)
covariance matrix *function*
linear.hypothesis(mod.davis, c("(Intercept) = 0", "repwt = 1"), vcov = hccm)
covariance matrix *estimate*
linear.hypothesis(mod.davis, c("(Intercept) = 0", "repwt = 1"),
 vcov = hccm(mod.davis, type = "hc3")

mod.duncan <- lm(prestige ~ income + education, data=Duncan)
the following are all equivalent:
linear.hypothesis(mod.duncan, "1*income - 1*education = 0")
linear.hypothesis(mod.duncan, "income = education")
linear.hypothesis(mod.duncan, "income - education")
linear.hypothesis(mod.duncan, "1*income - 1*education = 0")
linear.hypothesis(mod.duncan, "0 = 1*income - 1*education")
linear.hypothesis(mod.duncan, "income - education = 0")
linear.hypothesis(mod.duncan, "1*income - 1*education + 1 = 1")
linear.hypothesis(mod.duncan, "2*income = 2*education")

mod.duncan.2 <- lm(prestige ~ type*(income + education), data=Duncan)
coefs <- names(coef(mod.duncan.2))

test against the null model (i.e., only the intercept is not set to 0)
linear.hypothesis(mod.duncan.2, coefs[-1])

test all interaction coefficients equal to 0
linear.hypothesis(mod.duncan.2, coefs[grep(":", coefs)], verbose=TRUE)

a multivariate linear model for repeated-measures data
see ?OBrienKaiser for a description of the data set used in this example.
mod.ok <- lm(cbind(pre.1, pre.2, pre.3, pre.4, pre.5,
 post.1, post.2, post.3, post.4, post.5,
 fup.1, fup.2, fup.3, fup.4, fup.5) ~ treatment*gender,
 data=OBrienKaiser)

coeff(mod.ok)

specify the model for the repeated measures:
phase <- factor(rep(c("pretest", "posttest", "followup"), c(5, 5, 5)),
 levels=c("pretest", "posttest", "followup"))
hour <- ordered(rep(1:5, 3))
idata <- data.frame(phase, hour)

test the four-way interaction among the between-subject factors
treatment and gender, and the intra-subject factors
phase and hour
linear.hypothesis(mod.ok, c("treatment1:gender1", "treatment2:gender1"),
 title="treatment:gender:phase:hour", idata=idata, idesign=~phase*hour,
 iters="phase:hour")

logit

Logit Transformation

Description

Compute the logit transformation of proportions or percentages.
Usage

\[\text{logit}(p, \text{percents}=\max(p, \text{na.rm}=\text{TRUE}) > 1, \text{adjust}) \]

Arguments

- **p**: numeric vector or array of proportions or percentages.
- **percents**: TRUE for percentages.
- **adjust**: adjustment factor to avoid proportions of 0 or 1; defaults to 0 if there are no such proportions in the data, and to 0.025 if there are.

Details

Computes the logit transformation \(\text{logit} = \log\left(\frac{p}{1-p}\right) \) for the proportion \(p \).

If \(p = 0 \) or 1, then the logit is undefined. \text{logit} can remap the proportions to the interval \((\text{adjust}, 1-\text{adjust})\) prior to the transformation. If it adjusts the data automatically, \text{logit} will print a warning message.

Value

a numeric vector or array of the same shape and size as \(p \).

Author(s)

John Fox (jfox@mcmaster.ca)

See Also

\text{prob.axis}

Examples

```r
options(digits=4)
logit(.1*0:10)
## [1] -3.6636 -1.9924 -1.2950 -0.8001 -0.3847 0.0000 0.3847
## [8] 0.8001 1.2950 1.9924 3.6636
## Warning message:
## Proportions remapped to (0.025,0.975) in: logit(0.1 * 0:10)

logit(.1*0:10, adjust=0)
## [1] -Inf -2.1972 -1.3863 -0.8473 -0.4055 0.0000 0.4055
## [8] 0.8473 1.3863 2.1972 Inf
n.bins  
Number of Bins for Histogram

Description

Several rules for calculating the number of bins to use for a histogram.

Usage

n.bins(x, rule=c("freedman.diaconis", "sturges", "scott", "simple"))

Arguments

x  numeric vector, variable for histogram
rule see below.

Details

"freedman.diaconis": \(n^{1/3} \text{range}/2 \times IQR\).
"sturges": \(\text{ceiling}(\log_2 n + 1)\).
"scott": \(\text{ceiling}(n^{1/3} \text{range}/3.5s)\).
"simple": \(\text{floor}(10 \log_{10} n)\) for \(n > 100\), or \(\text{floor}(2\sqrt{n})\) for \(n \leq 100\).

where \(n\) is the number of observations, range is the range of \(x\), IQR is the inter-quartile range of \(x\), and \(s\) is the standard deviation of \(x\).

Value

the number of bins.

Author(s)

John Fox (jfox@mcmaster.ca)

References


See Also

hist
Examples

attach(UN)
n.bins(gdp)
## [1] 19
n.bins(gdp, "sturges")
## [1] 9
n.bins(gdp, "scott")
## [1] 8
n.bins(gdp, "simple")
## [1] 22
hist(gdp)
hist(gdp, nclass=n.bins(gdp))

ncv.test  Score Test for Non-Constant Error Variance

Description

Computes a score test of the hypothesis of constant error variance against the alternative that the error variance changes with the level of the response (fitted values), or with a linear combination of predictors.

Usage

ncv.test(model, ...)

## S3 method for class 'lm':
ncv.test(model, var.formula, data=NULL, subset, na.action, ...)

## S3 method for class 'glm':
ncv.test(model, ...)

Arguments

model  a weighted or unweighted linear model, produced by \texttt{lm}.

var.formula  a one-sided formula for the error variance; if omitted, the error variance depends on the fitted values.

data  an optional data frame containing the variables in the model. By default the variables are taken from the environment from which \texttt{ncv.test} is called.

subset  an optional vector specifying a subset of observations to be used.

na.action  a function that indicates what should happen when the data contain NAs. The default is set by the \texttt{na.action} setting of \texttt{options}.

...  arguments passed down to methods functions.
Details

This test is often called the Breusch-Pagan test; it was independently suggested by Cook and Weisberg (1983).

ncv.test.glm is a dummy function to generate an error when a glm model is used.

Value

The function returns a chisq.test object, which is usually just printed.

Author(s)

John Fox (jfox@mcmaster.ca)

References


See Also

hccm, spread.level.plot

Examples

```r
ncv.test(lm(interlocks~assets+sector+nation, data=Ornstein))
Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 46.98537 Df = 1 p = 7.151835e-12
ncv.test(lm(interlocks~assets+sector+nation, data=Ornstein),
 ~ assets+sector+nation, data=Ornstein)
Non-constant Variance Score Test
Variance formula: ~ assets + sector + nation
Chisquare = 74.73535 Df = 13 p = 1.066320e-10
```

---

outlier.test  

**Bonferroni Outlier Test**

Description

Reports the Bonferroni p-value for the most extreme observation. At present, there are methods for studentized residuals in linear and generalized linear models.
outlier.test

Usage

outlier.test(model, ...)

## S3 method for class 'lm':
outlier.test(model, labels=names(rstud), ...)

## S3 method for class 'glm':
outlier.test(model, labels=names(rstud), ...)

## S3 method for class 'outlier.test':
print(x, digits=options("digits")[[1]], ...)

Arguments

model a suitable model object.
labels an optional vector of observation names.
... arguments passed down to methods functions.
x outlier.test object.
digits number of digits for printed output.

Details

For a linear model, the p-value reported is for the largest absolute studentized residual, using the $t$ distribution with degrees of freedom one less than the residual df for the model. For a generalized linear model, the largest absolute studentized residual is also used, but with the standard-normal distribution. The Bonferroni adjustment multiplies the usual two-sided p-value by the number of observations.

Value

an object of class outlier.test, which is normally just printed.

Author(s)

John Fox (jfox@mcmaster.ca)

References


Examples

```r
outlier.test(lm(prestitute+income+education, data=Duncan))
max|rstudent| df unadjusted p Bonferroni p
3.134519 41 0.003177202 0.1429741
Observation: minister
```

panel.car  
**Panel Function Coplots**

Description

a panel function for use with `coplot` that plots points, a lowess line, and a regression line.

Usage

```r
panel.car(x, y, col, pch, cex=1, span=0.5, lwd=2,
regression.line=lm, lowess.line=TRUE, ...)
```

Arguments

- `x`: vector giving horizontal coordinates.
- `y`: vector giving vertical coordinates.
- `col`: point color.
- `pch`: plotting character for points.
- `cex`: character expansion factor for points.
- `span`: span for lowess smoother.
- `lwd`: line width, default is 2.
- `regression.line`: function to compute coefficients of regression line, or `FALSE` for no line.
- `lowess.line`: if `TRUE` plot lowess smooth.
- `...`: other arguments to pass to functions `lines` and `reg.line`.

Value

`NULL`. This function is used for its side effect: producing a panel in a coplot.

Author(s)

John Fox (jfox@mcmaster.ca)

See Also

`coplot`, `reg.line`
Examples

coplot(prestige~income|education, panel=panel.car,
    col="red", data=Prestige)

Description

Plots empirical quantiles of a variable, or of studentized residuals from a linear model, against
theoretical quantiles of a comparison distribution.

Usage

qq.plot(x, ...)

qqp(...)  

## Default S3 method:
qq.plot(x, distribution="norm", ylab=deparse(substitute(x)),
    xlab=paste(distribution, "quantiles"), main=NULL, las=par("las"),
    envelope=.95, labels=FALSE, col=palette()[2], lwd=2, pch=1, cex=1,
    line=c("quartiles", "robust", "none"), ...)

### S3 method for class 'lm':
qq.plot(x, main=NULL, xlab=paste(distribution, "Quantiles"),
    ylab=paste("Studentized Residuals("), deparse(substitute(x)), ")",
    sep = ""
    distribution=c("t", "norm"), line=c("quartiles", "robust", "none"),
    las=par('las'), simulate=FALSE, envelope=0.95, labels=names(rstudent),
    reps=100, col=palette()[2], lwd=2, pch=1, cex=1, ...)

Arguments

x vector of numeric values or lm object.
distribution root name of comparison distribution – e.g., norm for the normal distribution;
t for the t-distribution.
ylab label for vertical (empirical quantiles) axis.
xlab label for horizontal (comparison quantiles) axis.
main label for plot.
envelope confidence level for point-wise confidence envelope, or FALSE for no envelope.
labels vector of point labels for interactive point identification, or FALSE for no labels.
las if 0, ticks labels are drawn parallel to the axis; set to 1 for horizontal labels (see par).
color for points and lines; the default is the second entry in the current color palette (see `palette` and `par`).

plotting character for points; default is 1 (a circle, see `par`).

factor for expanding the size of plotted symbols; the default is 1.

line width; default is 2 (see `par`). Confidence envelopes are drawn at half this line width.

"quartiles" to pass a line through the quartile-pairs, or "robust" for a robust-regression line; the latter uses the `rlm` function in the MASS package. Specifying `line = "none"` suppresses the line.

if TRUE calculate confidence envelope by parametric bootstrap; for `lm` object only. The method is due to Atkinson (1985).

integer; number of bootstrap replications for confidence envelope.

arguments such as `df` to be passed to the appropriate quantile function.

Details

Draws theoretical quantile-comparison plots for variables and for studentized residuals from a linear model. A comparison line is drawn on the plot either through the quartiles of the two distributions, or by robust regression.

Any distribution for which quantile and density functions exist in R (with prefixes `q` and `d`, respectively) may be used. Studentized residuals are plotted against the appropriate t-distribution.

The function `qqp` is an abbreviation for `qq.plot`.

Value

`NULL`. These functions are used only for their side effect (to make a graph).

Author(s)

John Fox (jfox@mcmaster.ca)

References


See Also

`qqplot, qnorm, qline`

Examples

```r
x <- rchisq(100, df=2)
qq.plot(x)
qq.plot(x, dist="chisq", df=2)

qq.plot(lm(interlocks~assets+sector+nation, data=Ornstein), sim=TRUE)
```
**recode**  

**Recode a Variable**

**Description**

Recodes a numeric vector, character vector, or factor according to simple recode specifications.

**Usage**

```r
recode(var, recodes, as.factor.result, levels)
```

**Arguments**

- `var`: numeric vector, character vector, or factor.
- `recodes`: character string of recode specifications: see below.
- `as.factor.result`: return a factor; default is `TRUE` if `var` is a factor, `FALSE` otherwise.
- `levels`: an optional argument specifying the order of the levels in the returned factor; the default is to use the sort order of the level names.

**Details**

Recode specifications appear in a character string, separated by semicolons (see the examples below), of the form `input=output`. If an input value satisfies more than one specification, then the first (from left to right) applies. If no specification is satisfied, then the input value is carried over to the result. NA is allowed on input and output. Several recode specifications are supported:

- **single value** For example, `0=NA`.
- **vector of values** For example, `c(7,8,9)='high'`.
- **range of values** For example, `7:9='C'`. The special values `lo` and `hi` may appear in a range. For example, `lo:10=1`.
- **else** everything that does not fit a previous specification. For example, `else=NA`. Note that `else` matches all otherwise unspecified values on input, including NA.

If all of the output values are numeric, and if `as.factor.result` is `FALSE`, then a numeric result is returned.

**Value**

a recoded vector of the same length as `var`; if `var` is a factor, then so is the result.

**Author(s)**

John Fox (jfox@mcmaster.ca)
See Also

\texttt{cut, factor}

Examples

\begin{verbatim}
x <- rep(1:3, 3)
x 
## [1] 1 2 3 1 2 3 1 2 3
recode(x, "c(1,2)='A'; else='B'") 
## [1] "A" "A" "B" "A" "A" "B" "A" "A" "B"
recode(x, "1:2='A'; 3='B'")
## [1] "A" "A" "B" "A" "A" "B" "A" "A" "B"
\end{verbatim}

\section*{reg.line \hspace{1cm} \textit{Plot Regression Line}}

Description

Plots a regression line on a scatterplot; the line is plotted between the minimum and maximum x-values.

Usage

\begin{verbatim}
reg.line(mod, col=palette()[2], lwd=2, lty=1,...)
\end{verbatim}

Arguments

\begin{itemize}
  \item mod \hspace{1cm} a model, such as produced by \texttt{lm}, that responds to the \texttt{coefficients} function by returning a 2-element vector, whose elements are interpreted respectively as the intercept and slope of a regression line.
  \item col \hspace{1cm} color for points and lines; the default is the second entry in the current color palette (see \texttt{palette} and \texttt{par}).
  \item lwd \hspace{1cm} line width; default is 2 (see \texttt{par}).
  \item lty \hspace{1cm} line type; default is 1, a solid line (see \texttt{par}).
  \item ... \hspace{1cm} optional arguments to be passed to the \texttt{lines} plotting function.
\end{itemize}

Details

In contrast to \texttt{abline}, this function plots only over the range of the observed x-values. The x-values are extracted from \texttt{mod} as the second column of the model matrix.

Value

\texttt{NULL}. This function is used for its side effect: adding a line to the plot.
scatterplot

Author(s)
John Fox (jfox@mcmaster.ca)

See Also
abline, lines

Examples

plot(repwt ~ weight, pch=c(1,2)[sex], data=Davis)
reg.line(lm(repwt~weight, subset=sex=="M", data=Davis))
reg.line(lm(repwt~weight, subset=sex=="F", data=Davis), lty=2)

scatterplot Scatterplots with Boxplots

Description

Makes fancy scatterplots, with boxplots in the margins, a lowess smooth, and a regression line; sp is an abbreviation for scatterplot.

Usage

scatterplot(x, ...)

## S3 method for class 'formula':
scatterplot(formula, data, xlab, ylab, legend.title, subset, labels=FALSE, ...)

## Default S3 method:
scatterplot(x, y, smooth=TRUE, span=0.5, reg.line=lm, boxplots="xy", xlab=deparse(substitute(x)), ylab=deparse(substitute(y)), las=par('las'), lwd=1, labels=FALSE, log="", jitter=list(), xlim=NULL, ylim=NULL, cex=par("cex"), cex.axis=par("cex.axis"), cex.lab=par("cex.lab"), cex.main=par("cex.main"), cex.sub=par("cex.sub"), groups=FALSE, by.groups=! (groups[1]==FALSE), legend.title=deparse(substitute(groups)), ellipse=FALSE, levels=c(.5, .9), robust=FALSE, col=palette(), pch=1:n.groups, legend.plot=length(levels(groups)) > 1, reset.par=TRUE, ...)

sp(...)

Arguments

formula “model” formula, of the form y ~ x or (to plot by groups) y ~ x | z, where z evaluates to a factor or other variable dividing the data into groups.
data data frame within which to evaluate the formula.
subset expression defining a subset of observations.
scatterplot

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>vector of horizontal coordinates.</td>
</tr>
<tr>
<td>y</td>
<td>vector of vertical coordinates.</td>
</tr>
<tr>
<td>smooth</td>
<td>if TRUE a lowess nonparametric regression line is drawn on the plot.</td>
</tr>
<tr>
<td>span</td>
<td>span for the lowess smooth.</td>
</tr>
<tr>
<td>reg.line</td>
<td>function to draw a regression line on the plot or FALSE not to plot a regression line.</td>
</tr>
<tr>
<td>boxplots</td>
<td>if &quot;x&quot; a boxplot for x is drawn above the plot; if &quot;y&quot; a boxplot for y is drawn to the right of the plot; if &quot;xy&quot; both boxplots are drawn.</td>
</tr>
<tr>
<td>xlab</td>
<td>label for horizontal axis.</td>
</tr>
<tr>
<td>ylab</td>
<td>label for vertical axis.</td>
</tr>
<tr>
<td>las</td>
<td>if 0, ticks labels are drawn parallel to the axis; set to 1 for horizontal labels (see par).</td>
</tr>
<tr>
<td>lwd</td>
<td>width of plotted lines.</td>
</tr>
<tr>
<td>labels</td>
<td>if not FALSE a vector of point labels, to be used interactively to identify points on the plot.</td>
</tr>
<tr>
<td>log</td>
<td>same as the log argument to plot, to produce log axes.</td>
</tr>
<tr>
<td>jitter</td>
<td>a list with elements x or y or both, specifying jitter factors for the horizontal and vertical coordinates of the points in the scatterplot. The jitter function is used to randomly perturb the points; specifying a factor of 1 produces the default jitter. Fitted lines are unaffected by the jitter.</td>
</tr>
<tr>
<td>xlim</td>
<td>the x limits (min,max) of the plot; if NULL, determined from the data.</td>
</tr>
<tr>
<td>ylim</td>
<td>the y limits (min,max) of the plot; if NULL, determined from the data.</td>
</tr>
<tr>
<td>groups</td>
<td>a factor or other variable dividing the data into groups; groups are plotted with different colors and plotting characters.</td>
</tr>
<tr>
<td>by.groups</td>
<td>if TRUE, regression lines are fit by groups.</td>
</tr>
<tr>
<td>legend.title</td>
<td>title for legend box; defaults to the name of the groups variable.</td>
</tr>
<tr>
<td>ellipse</td>
<td>if TRUE data-concentration ellipses are plotted.</td>
</tr>
<tr>
<td>levels</td>
<td>level or levels at which concentration ellipses are plotted; the default is c(.5,.9).</td>
</tr>
<tr>
<td>robust</td>
<td>if TRUE use the cov.trob function in the MASS package to calculate the center and covariance matrix for the data ellipse.</td>
</tr>
<tr>
<td>col</td>
<td>colors for points and lines; the default is the current color palette, starting at the second entry (see palette and par).</td>
</tr>
<tr>
<td>pch</td>
<td>plotting characters for points; default is the plotting characters in order (see par).</td>
</tr>
<tr>
<td>cex, cex.axis, cex.lab, cex.main, cex.sub</td>
<td>set sizes of various graphical elements; (see par).</td>
</tr>
<tr>
<td>legend.plot</td>
<td>if TRUE then a legend for the groups is plotted in the upper margin.</td>
</tr>
<tr>
<td>reset.par</td>
<td>if TRUE then plotting parameters are reset to their previous values when scatterplot exits; if FALSE then the mar and mfcol parameters are altered for the current plotting device. Set to FALSE if you want to add graphical elements (such as lines) to the plot.</td>
</tr>
<tr>
<td>...</td>
<td>other arguments passed to plot.</td>
</tr>
</tbody>
</table>
Value

NULL. This function is used for its side effect: producing a plot.

Author(s)

John Fox 〈jfox@mcmaster.ca〉

See Also

graphics, boxplot, jitter scatterplot.matrix, data.ellipse, par, cov.trob.

Examples

scatterplot(prestige ~ income|type, data=Prestige, span=1)
scatterplot(vocabulary ~ education, jitter=list(x=1, y=1), data=Vocab)
  # Not run:
scatterplot(infant.mortality ~ gdp, labels=row.names(UN), data=UN)
scatterplot(infant.mortality ~ gdp, log="xy", labels=row.names(UN), data=UN)
  # End (Not run)

scatterplot.matrix  Scatterplot Matrices

Description

Scatterplot matrices with univariate displays down the diagonal; spm is an abbreviation for scatterplot.matrix. This function just sets up a call to pairs.

Usage

scatterplot.matrix(x, ...)
  # S3 method for class 'formula':
scatterplot.matrix(formula, data=NULL, subset, ...)
  # Default S3 method:
scatterplot.matrix(x, labels=colnames(x),
          diagonal=c("density", "boxplot", "histogram", "oned", "qqplot", "none"),
          adjust=1, nclass, plot.points=TRUE, smooth=TRUE, span=0.5, reg.line=lm,
          transform=FALSE, ellipse=FALSE, levels=c(.5, .9), robust=FALSE,
          groups=FALSE, by.groups=FALSE, col=palette(),
          pch=1:n.groups, lwd=1,
          cex=par("cex"), cex.axis=par("cex.axis"), cex.labels=NULL,
          cex.main=par("cex.main"),
legend.plot=length(levels(groups)) > 1, ...)

spm(x, ...)

Arguments

x | a data matrix, numeric data frame, or formula.

formula | a one-side “model” formula, of the form ~ x1 + x2 + ... + xk or ~ x1 + x2 + ... + xk | z where z evaluates to a factor or other variable to divide the data into groups.

data | for `scatterplot.matrix.formula`, a data frame within which to evaluate the formula.

subset | expression defining a subset of observations.

labels | variable labels (for the diagonal of the plot).

diagonal | contents of the diagonal panels of the plot.

adjust | relative bandwidth for density estimate, passed to `density` function.

nclass | number of bins for histogram, passed to `hist` function.

plot.points | if TRUE the points are plotted in each off-diagonal panel.

smooth | if TRUE a lowess smooth is plotted in each off-diagonal panel.

span | span for lowess smoother.

reg.line | if not FALSE a line is plotted using the function given by this argument; e.g., using `rlm` in package `MASS` plots a robust-regression line.

transform | if TRUE, multivariate normalizing Box-Cox transformations are computed and plotted; if a vector of powers, one for each variable, these are applied as Box-Cox power transformations prior to plotting.

ellipse | if TRUE data-concentration ellipses are plotted in the off-diagonal panels.

levels | levels or levels at which concentration ellipses are plotted; the default is `c(.5, .9)`.

robust | if TRUE use the `cov.trob` function in the `MASS` package to calculate the center and covariance matrix for the data ellipse.

groups | a factor or other variable dividing the data into groups; groups are plotted with different colors and plotting characters.

by.groups | if TRUE, regression lines are fit by groups.

pch | plotting characters for points; default is the plotting characters in order (see `par`).

col | colors for points and lines; the default is the in the current color palette, starting at the second entry (see `palette` and `par`).

lwd | width for lines.

cex, cex.axis, cex.labels, cex.main | set sizes of various graphical elements; (see `par`).

legend.plot | if TRUE then a legend for the groups is plotted in the bottom-right cell.

... | arguments to pass down.
some

Value

`NULL`. This function is used for its side effect: producing a plot.

Author(s)

John Fox  ⟨jfox@mcmaster.ca⟩

See Also

`pairs, scatterplot, data.ellipse, box.cox.powers, box.cox, cov.trob`.

Examples

```r
scatterplot.matrix(~income + education + prestige | type, data=Duncan)
some(x, n=10, ...)
```

Description

Randomly select a few elements of an object, typically a data frame, matrix, vector, or list. If the object is a data frame or a matrix, then rows are sampled.

Usage

```r
some(x, ...)
```

Arguments

- `x` the object to be sampled.
- `n` number of elements to sample.
- `...` arguments passed down.

Value

Sampled elements or rows.
Note
These functions are adapted from \texttt{head} and \texttt{tail} in the \texttt{utils} package.

Author(s)
John Fox (jfox@mcmaster.ca)

See Also
\texttt{head}, \texttt{tail}.

Examples
\begin{verbatim}
some(data.frame(z=rnorm(100), u=runif(100)))
\end{verbatim}

\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969,0.969,0.969}
\definecolor{底色}{rgb}{0.969,0.969,0.969}
\definecolor{hlcolor}{rgb}{1,1,1}
\definecolor{codecolor}{rgb}{0,0.5,0.5}

spread.level.plot  \textit{Spread-Level Plots}

Description
Creates plots for examining the possible dependence of spread on level, or an extension of these plots to the studentized residuals from linear models.

Usage
\begin{verbatim}
spread.level.plot(x, \ldots)

slp(x, \ldots)
\end{verbatim}

\begin{verbatim}
## S3 method for class 'formula':
spread.level.plot(formula, data=NULL, subset, na.action,
                   main=paste("Spread-Level Plot for", varnames[response],
                              "by", varnames[-response]), \ldots)

## Default S3 method:
spread.level.plot(x, by,
                   robust.line=any("MASS"==.packages(all=TRUE)),
                   start=0, xlab="Median", ylab="Hinge-Spread", point.labels=TRUE, las=par("las"),
                   main=paste("Spread-Level Plot for", deparse(substitute(x)),
                              "by", deparse(substitute(by))), col=palette()[2], pch=1, lwd=2, \ldots)

## S3 method for class 'lm':
spread.level.plot(x, start=0,
                   robust.line=any("MASS"==.packages(all=TRUE)),
                   xlab="Fitted Values",
                   ylab="Absolute Studentized Residuals", las=par("las"),
                   main=paste("Spread-Level Plot for", deparse(substitute(x))),
\end{verbatim}

\end{knitrout}
spread.level.plot

pch=1, col=palette()[2], lwd=2, ...

## S3 method for class 'spread.level.plot': print(x, ...)

### Arguments

- **x**: a formula or an lm object to be plotted; alternatively a numeric vector.
- **formula**: a formula of the form y~x, where y is a numeric vector and x is a factor.
- **data**: an optional data frame containing the variables to be plotted. By default the variables are taken from the environment from which spread.level.plot is called.
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function that indicates what should happen when the data contain NAs. The default is set by the na.action setting of options.
- **by**: a factor, numeric or character vector defining groups.
- **robust.line**: if TRUE a robust line is fit using the rlm function in the MASS package; if FALSE a line is fit using lm.
- **start**: add the constant start to each data value.
- **main**: title for the plot.
- **xlab**: label for horizontal axis.
- **ylab**: label for vertical axis.
- **point.labels**: if TRUE label the points in the plot with group names.
- **las**: if 0, ticks labels are drawn parallel to the axis; set to 1 for horizontal labels (see par).
- **col**: color for points and lines; the default is the second entry in the current color palette (see palette and par).
- **pch**: plotting character for points; default is 1 (a circle, see par).
- **lwd**: line width; default is 2 (see par).
- **...**: arguments passed to plotting functions.

### Details

Except for linear models, computes the statistics for, and plots, a Tukey spread-level plot of log(hinge-spread) vs. log(median) for the groups; fits a line to the plot; and calculates a spread-stabilizing transformation from the slope of the line.

For linear models, plots log(abs(studentized residuals)) vs. log(fitted values).

The function slp is an abbreviation for spread.level.plot.
subsets

Value

A list containing:

Statistics  a matrix with the lower-hinge, median, upper-hinge, and hinge-spread for each
group. (Not for an lm object.)

PowerTransformation  spread-stabilizing power transformation, calculated as 1 – slope of the line fit to
the plot.

Author(s)

John Fox ⟨jfox@mcmaster.ca⟩

References

Data Analysis. Wiley.

See Also

hccm, ncv.test

Examples

spread.level.plot(interlocks+1~nation, data=Ornstein)
## Loading required package: MASS
## LowerHinge Median UpperHinge Hinge-Spread
## US 2 6.0 13 11
## UK 4 9.0 14 10
## CAN 6 13.0 30 24
## OTH 4 15.5 24 20
##
## Suggested power transformation: 0.1534487

slp(lm(interlocks ~ assets + sector + nation, data=Ornstein))
## Suggested power transformation: 0.3222165
## Warning message:
## Start = 3 added to fitted values to avoid 0 or negative values. in: spread.level.plot.lm

---

subsets  Plot Output from regsubsets Function in leaps package

Description

The regsubsets function in the leaps package finds optimal subsets of predictors. This function
plots a measure of fit (see the statistic argument below) against subset size.)
subsets

Usage

subsets(object, ...)

## S3 method for class 'regsubsets':
subsets(object,
   names=abbreviate(object$xnames, minlength = abbrev),
   abbrev=1, min.size=1, max.size=length(names), legend,
   statistic=c("bic", "cp", "adjr2", "rsq", "rss"),
   las=par('las'), cex.subsets=1, ...)

Arguments

object a regsubsets object produced by the regsubsets function in the leaps package.

names a vector of (short) names for the predictors, excluding the regression intercept, if one is present; if missing, these are derived from the predictor names in object.

abbrev minimum number of characters to use in abbreviating predictor names.

min.size minimum size subset to plot; default is 1.

max.size maximum size subset to plot; default is number of predictors.

legend TRUE to plot a legend of predictor names; defaults to TRUE if abbreviations are computed for predictor names. The legend is placed on the plot interactively with the mouse.

statistic statistic to plot for each predictor subset; one of: "bic", Bayes Information Criterion; "cp", Mallows’s $C_p$; "adjr2", $R^2$ adjusted for degrees of freedom; "rsq", unadjusted $R^2$; "rss", residual sum of squares.

las if 0, ticks labels are drawn parallel to the axis; set to 1 for horizontal labels (see par).

cex.subsets can be used to change the relative size of the characters used to plot the regression subsets; default is 1.

... arguments to be passed down to subsets.regsubsets and plot.

Value

NULL. This function is used for its side effect – to create a plot.

Author(s)

John Fox

See Also

regsubsets
Examples

```r
Not run:
library(leaps)
subsets(regsubsets(undercount ~ ., data=Ericksen))

End(Not run)
```

---

**symbox**

*Boxplots for transformations to symmetry*

**Description**

`symbox` first transforms `x` to each of a series of selected powers, with each transformation standardized to mean 0 and standard deviation 1. The results are then displayed side-by-side in boxplots, permitting a visual assessment of which power makes the distribution reasonably symmetric.

**Usage**

```r
symbox(x, powers=c(-1, -.5, 0, .5, 1), start=0)
```

**Arguments**

- `x`: a numeric vector.
- `powers`: a vector of selected powers to which `x` is to be raised. A power of 0 is taken to mean \(\log(x)\). Negative powers are taken to mean \(-x^p\), to preserve the order of the data. For meaningful comparison of powers, 1 should be included in the vector of powers.
- `start`: a constant to be added to `x`; after adding the start, all data values must be positive.

**Value**

as returned by `boxplot`.

**Author(s)**

Gregor Gorjanc, John Fox (jfox@mcmaster.ca)

**References**


**See Also**

`boxplot`, `boxcox`, `box.cox`
**vif**

**Examples**

```r
symbox(Prestige$income)
```

---

**Description**

Calculates variance-inflation and generalized variance-inflation factors for linear and generalized linear models.

**Usage**

```r
vif(mod)
```

```r
S3 method for class 'lm':
vif(mod)
```

**Arguments**

- `mod` an object that inherits from class `lm`, such as an `lm` or `glm` object.

**Details**

If all terms in an unweighted linear model have 1 df, then the usual variance-inflation factors are calculated.

If any terms in an unweighted linear model have more than 1 df, then generalized variance-inflation factors (Fox and Monette, 1992) are calculated. These are interpretable as the inflation in size of the confidence ellipse or ellipsoid for the coefficients of the term in comparison with what would be obtained for orthogonal data.

The generalized vifs are invariant with respect to the coding of the terms in the model (as long as the subspace of the columns of the model matrix pertaining to each term is invariant). To adjust for the dimension of the confidence ellipsoid, the function also prints \( GVIF^{1/(2 \times df)} \).

Through a further generalization, the implementation here is applicable as well to other sorts of models, in particular weighted linear models and generalized linear models, that inherit from class `lm`.

**Value**

A vector of vifs, or a matrix containing one row for each term in the model, and columns for the GVIF, df, and \( GVIF^{1/(2 \times df)} \).

**Author(s)**

Henric Nilsson and John Fox (jfox@mcmaster.ca)
References


Examples

```r
vif(lm(prestige~income+education, data=Duncan))
income education
2.104900 2.104900
vif(lm(prestige~income+education+type, data=Duncan))
GVIF Df GVIF^(1/2Df)
income 2.209178 1 1.486330
education 5.297584 1 2.301648
type 5.098592 2 1.502666
```

which.names(names, object)

Description

This function returns the indices of row names in a data frame or a vector of names.

Usage

```r
which.names(names, object)
```

Arguments

- `names`: a name or character vector of names.
- `object`: a data frame or character vector of (row) names.

Value

Returns the index or indices of `names` within `object`.

Author(s)

John Fox (jfox@mcmaster.ca)

Examples

```r
which.names(c('minister', 'conductor'), Duncan)
[1] 6 16
```
Index

*Topic aplot
   Ellipses, 22
   panel.car, 82
   reg.line, 86
   Transformation Axes, 43

*Topic datasets
   Adler, 2
   Angell, 2
   Anscombe, 10
   Baumann, 12
   Bfox, 13
   Blackmoor, 14
   Burt, 14
   Can.pop, 15
   Chile, 15
   Chirot, 16
   Cowles, 19
   Davis, 19
   DavisThin, 20
   Duncan, 21
   Ericksen, 24
   Florida, 25
   Freedman, 26
   Friendly, 26
   Ginzberg, 27
   Greene, 28
   Guyer, 29
   Hartnagel, 29
   Leinhardt, 30
   Mandel, 31
   Migration, 32
   Moore, 33
   Mroz, 33
   OBrienKaiser, 34
   Ornstein, 35
   Pottery, 36
   Prestige, 37
   Quartet, 38
   Robey, 38
   Sahlin, 40
   SLID, 39
   Soils, 40
   States, 42
   UN, 45
   US.pop, 45
   Vocab, 47
   Womenlf, 48

*Topic distribution
   qq.plot, 83

*Topic dplot
   n.bins, 78

*Topic hplot
   av.plots, 48
   ceres.plots, 61
   cr.plots, 63
   Ellipses, 22
   leverage.plots, 70
   scatterplot, 87
   scatterplot.matrix, 89
   spread.level.plot, 92
   subsets, 94
   symbox, 96

*Topic htest
   Anova, 3
   levene.test, 69
   linear.hypothesis, 72
   ncv.test, 79
   outlier.test, 80

*Topic internal
   car-internal, 57

*Topic iplot
   Ask, 11

*Topic manip
   box.cox, 50
   box.cox.var, 54
   logit, 76
   recode, 85

*Topic misc
Ask, 11
Var, 46

*Topic models
Anova, 3
box.cox.powers, 52
Contrasts, 17
Cook’s Distances, 62
linear.hypothesis, 72

*Topic multivariate
box.cox.powers, 52

*Topic package
car-package, 58

*Topic regression
Anova, 3
av.plots, 48
box.cox, 50
box.cox.var, 54
box.tidwell, 55
ceres.plots, 61
Contrasts, 17
Cook’s Distances, 62
cr.plots, 63
durbin.watson, 65
durbin.watson.axis, 51
influencPlot, 68
leverage.plots, 70
linear.hypothesis, 72
ncv.test, 79
outlier.test, 80
qq.plot, 83
spread.level.plot, 92
subsets, 94
vif, 97

*Topic ts
durbin.watson, 65

*Topic univar
qq.plot, 83

*Topic utilities
some, 91
which.names, 98

abline, 87
Adler, 2
Angell, 2
Anova, 3, 74, 75
anova, 6, 75
anova.glm, 6
Anova.II.F.glm (Anova), 3
Anova.II.LR.glm (Anova), 3
Anova.II.minitm (Anova), 3
Anova.II.polr (Anova), 3
Anova.II.Wald (Anova), 3
Anova.III.F.glm (Anova), 3
Anova.III.lm (Anova), 3
Anova.III.LR.glm (Anova), 3
Anova.III.minitm (Anova), 3
Anova.III.polr (Anova), 3
Anova.III.Wald (Anova), 3
Anova.IV.minitm (Anova), 3
Anova.IV.polr (Anova), 3
Anscombe, 10
av.plot (av.plots), 48
av.plots, 48, 54, 62, 65, 71
avp (av.plots), 48
Baumann, 12
bc (box.cox), 50
Bfox, 13
Blackmoor, 14
Can.pop, 15
car (car-package), 58
car-package, 58
car-.internal, 57
ceres.plot (ceres.plots), 61
ceres.plots, 50, 61, 65
Chile, 15
Chirot, 16
cow, 75
certainty.ellipse (Ellipses), 22
corr.Helmert (Contrasts), 17
INDEX

contr helmert, 18
contr poly, 18
contr Sum (Contrasts), 17
contr sum, 18
contr Treatment (Contrasts), 17
Contrasts, 17
Cook’s Distances, 62
cookd, 69
cookd (Cook’s Distances), 62
cooks distance, 63
coplot, 82
cov trob, 23, 89, 91
Cowles, 19
cr plot (cr plots), 63
cr plots, 50, 62, 63
crp (cr plots), 63
cut, 86
data ellipse, 89, 91
data ellipse (Ellipses), 22
Davis, 19
DavisThin, 20
df terms (car internal), 57
Duncan, 21
durbin.watson, 65
ellipse (Ellipses), 22
Ellipses, 22
Ericksen, 24
factor, 86
Florida, 25
Freedman, 26
Friendly, 26
Ginzberg, 27
graphics, 89
Greene, 28
Guyer, 29
Hartnagel, 29
has intercept (car internal), 57
hatvalues, 69
hccm, 66, 73, 75, 80, 94
head, 92
hist, 78
influence, 63
influence plot (influencPlot), 68
influencePlot, 68
inv (car internal), 57
is aliased (car internal), 57
jitter, 88, 89
Leinhardt, 30
levene test, 69
leverage plot (leverage plots), 70
leverage plots, 50, 70
lht (linear hypothesis), 72
linear hypothesis, 6, 72
lines, 87
logit, 44, 76
Mandel, 31
Manova (Anova), 3
mfrow (car internal), 57
Migration, 32
Moore, 33
Mroz, 33
n bins, 78
ncv test, 67, 79, 94
nice (car internal), 57
OBrienKaiser, 34
Ornstein, 35
outlier test, 80
pairs, 91
palette, 23, 49, 61, 64, 71, 84, 86, 88, 90, 93
panel car, 82
par, 23, 43, 49, 61, 64, 71, 83, 84, 86, 88–90, 93, 95
Pottery, 36
power axis (Transformation Axes), 43
predictor names (car internal), 57
Prestige, 37
print Anova.mlm (Anova), 3
print box cox powers (box cox powers), 52
print box tidwell (box tidwell), 55
print chisq test (car internal), 57
print.durbin.watson
   (durbin.watson), 65
print.linear.hypothesis.mlm
   (linear.hypothesis), 72
print.outlier.test
   (outlier.test), 80
print.spread.level.plot
   (spread.level.plot), 92
prob.axis, 77
prob.axis (Transformation Axes), 43

qq.plot, 83
qqline, 84
qqnorm, 84
qqp (qq.plot), 83
qqplot, 84
Quartet, 38

recode, 85
reg.line, 82, 86
regsubsets, 94, 95
relatives (car-internal), 57
response (car-internal), 57
responseName (car-internal), 57
Robey, 38
rstudent, 69

Sahlins, 40
scatterplot, 87, 91
scatterplot.matrix, 89, 89
SLID, 39
slp (spread.level.plot), 92
Soils, 40
some, 91
sp (scatterplot), 87
spm (scatterplot.matrix), 89
spread.level.plot, 67, 80, 92
States, 42
subsets, 94
summary.Anova.mlm (Anova), 3
summary.box.cox.powers
   (box.cox.powers), 52
symbox, 96

tail, 92
term.names (car-internal), 57
Transformation Axes, 43

UN, 45

US.pop, 45
Var, 46
var, 46
vcov, 75
vcovHAC, 75
vcovHC, 75
vif, 97
Vocab, 47
waldtest, 75
which.names, 98
Womenlf, 48