The QRMlib Package

April 16, 2007

Version 1.4

Date 2007-04-08

Title Provides R-language code to examine Quantitative Risk Management concepts

Author Alexander McNeil for S-Plus original; R port by Scott Ulman

Maintainer R-language version by Scott Ulman <scottulman@hotmail.com>

Depends R(>= 2.4.1), methods, fCalendar, fEcofin, mvtnorm, chron, its, Hmisc

License GPL version 2 or newer

R topics documented:

QRMlib-package ... 4
QRMBook-workspace .. 5
storeDataInWorkspace .. 7
profileLoadLibrary .. 7
BiDensPlot .. 9
cac40 ... 10
DJComponents .. 10
dji ... 10
FXGBP.RAW ... 10
GEV ... 11
GPD ... 12
Gumbel .. 13
Kendall .. 13
MCECM.Qfunc .. 14
MCECMupdate ... 15
<table>
<thead>
<tr>
<th>R topics documented:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MEplot</td>
<td>16</td>
</tr>
<tr>
<td>MardiaTest</td>
<td>16</td>
</tr>
<tr>
<td>Pconstruct</td>
<td>17</td>
</tr>
<tr>
<td>Pdeconstruct</td>
<td>18</td>
</tr>
<tr>
<td>QQplot</td>
<td>19</td>
</tr>
<tr>
<td>RiskMeasures</td>
<td>20</td>
</tr>
<tr>
<td>Spearman</td>
<td>20</td>
</tr>
<tr>
<td>TimeSeriesClassRMetrics</td>
<td>21</td>
</tr>
<tr>
<td>aggregateMonthlySeries</td>
<td>23</td>
</tr>
<tr>
<td>aggregateQuarterlySeries</td>
<td>25</td>
</tr>
<tr>
<td>aggregateSignalSeries</td>
<td>27</td>
</tr>
<tr>
<td>aggregateWeeklySeries</td>
<td>29</td>
</tr>
<tr>
<td>besselM3</td>
<td>30</td>
</tr>
<tr>
<td>beta (stats)</td>
<td>31</td>
</tr>
<tr>
<td>cal.beta</td>
<td>32</td>
</tr>
<tr>
<td>cal.claytonmix</td>
<td>33</td>
</tr>
<tr>
<td>cal.probitnorm</td>
<td>34</td>
</tr>
<tr>
<td>claytonmix</td>
<td>36</td>
</tr>
<tr>
<td>CovToCor</td>
<td>37</td>
</tr>
<tr>
<td>Danish</td>
<td>37</td>
</tr>
<tr>
<td>dcopula.clayton</td>
<td>38</td>
</tr>
<tr>
<td>dcopula.gauss</td>
<td>39</td>
</tr>
<tr>
<td>dcopula.gumbel</td>
<td>40</td>
</tr>
<tr>
<td>dcopula.t</td>
<td>41</td>
</tr>
<tr>
<td>dmnorm</td>
<td>42</td>
</tr>
<tr>
<td>dmt</td>
<td>43</td>
</tr>
<tr>
<td>dsmghyp</td>
<td>43</td>
</tr>
<tr>
<td>edf</td>
<td>45</td>
</tr>
<tr>
<td>EGIG</td>
<td>45</td>
</tr>
<tr>
<td>eigenmeth</td>
<td>46</td>
</tr>
<tr>
<td>ElogGIG</td>
<td>47</td>
</tr>
<tr>
<td>EMupdate</td>
<td>48</td>
</tr>
<tr>
<td>equicorr</td>
<td>49</td>
</tr>
<tr>
<td>ESnorm</td>
<td>49</td>
</tr>
<tr>
<td>ESst</td>
<td>50</td>
</tr>
<tr>
<td>extremalPP</td>
<td>51</td>
</tr>
<tr>
<td>findthreshold</td>
<td>52</td>
</tr>
<tr>
<td>fit.Archcopula2d</td>
<td>53</td>
</tr>
<tr>
<td>fit.GEV</td>
<td>54</td>
</tr>
<tr>
<td>fit.GPD</td>
<td>55</td>
</tr>
<tr>
<td>fit.GPDb</td>
<td>56</td>
</tr>
<tr>
<td>fit.NH</td>
<td>57</td>
</tr>
<tr>
<td>fit.POT</td>
<td>58</td>
</tr>
<tr>
<td>fit.binomial</td>
<td>59</td>
</tr>
<tr>
<td>fit.binomialBeta</td>
<td>60</td>
</tr>
<tr>
<td>fit.binomialLogitnorm</td>
<td>61</td>
</tr>
<tr>
<td>fit.binomialProbitnorm</td>
<td>62</td>
</tr>
<tr>
<td>fit.gausscopula</td>
<td>63</td>
</tr>
</tbody>
</table>
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>fit.mNH</td>
<td>64</td>
</tr>
<tr>
<td>fit.mst</td>
<td>66</td>
</tr>
<tr>
<td>fit.norm</td>
<td>67</td>
</tr>
<tr>
<td>fit.seMPP</td>
<td>67</td>
</tr>
<tr>
<td>fit.sePP</td>
<td>69</td>
</tr>
<tr>
<td>fit.st</td>
<td>70</td>
</tr>
<tr>
<td>fit.tcopula</td>
<td>71</td>
</tr>
<tr>
<td>fit.tcopula.rank</td>
<td>72</td>
</tr>
<tr>
<td>ftse100</td>
<td>73</td>
</tr>
<tr>
<td>ghyp</td>
<td>73</td>
</tr>
<tr>
<td>ghypB</td>
<td>74</td>
</tr>
<tr>
<td>hess</td>
<td>76</td>
</tr>
<tr>
<td>hillPlot</td>
<td>77</td>
</tr>
<tr>
<td>hsi</td>
<td>78</td>
</tr>
<tr>
<td>jointnormalTest</td>
<td>78</td>
</tr>
<tr>
<td>kurtosisSPlus</td>
<td>79</td>
</tr>
<tr>
<td>lbeta</td>
<td>80</td>
</tr>
<tr>
<td>mghyp</td>
<td>80</td>
</tr>
<tr>
<td>mk.its.exceedances.ts</td>
<td>82</td>
</tr>
<tr>
<td>mk.its.exceedances.vector</td>
<td>84</td>
</tr>
<tr>
<td>mk.olds</td>
<td>85</td>
</tr>
<tr>
<td>mk.returns</td>
<td>86</td>
</tr>
<tr>
<td>momest</td>
<td>87</td>
</tr>
<tr>
<td>nasdaq</td>
<td>88</td>
</tr>
<tr>
<td>nikkei</td>
<td>88</td>
</tr>
<tr>
<td>plot.MPP</td>
<td>88</td>
</tr>
<tr>
<td>plot.PP</td>
<td>89</td>
</tr>
<tr>
<td>plot.sePP</td>
<td>90</td>
</tr>
<tr>
<td>plot.timeSeriesIts</td>
<td>91</td>
</tr>
<tr>
<td>plotFittedGPDvsEmpiricalExcesses</td>
<td>92</td>
</tr>
<tr>
<td>plotTail</td>
<td>93</td>
</tr>
<tr>
<td>probitnorm</td>
<td>94</td>
</tr>
<tr>
<td>psifunc</td>
<td>95</td>
</tr>
<tr>
<td>qst</td>
<td>96</td>
</tr>
<tr>
<td>rAC</td>
<td>97</td>
</tr>
<tr>
<td>rBB9Mix</td>
<td>98</td>
</tr>
<tr>
<td>rFrankMix</td>
<td>99</td>
</tr>
<tr>
<td>rGIG</td>
<td>99</td>
</tr>
<tr>
<td>rbinomial.mixture</td>
<td>101</td>
</tr>
<tr>
<td>rcopula.AGumbel</td>
<td>102</td>
</tr>
<tr>
<td>rcopula.Gumbel2Gp</td>
<td>103</td>
</tr>
<tr>
<td>rcopula.clayton</td>
<td>104</td>
</tr>
<tr>
<td>rcopula.frank</td>
<td>104</td>
</tr>
<tr>
<td>rcopula.gauss</td>
<td>105</td>
</tr>
<tr>
<td>rcopula.gumbel</td>
<td>106</td>
</tr>
<tr>
<td>rcopula.GumbelNested</td>
<td>107</td>
</tr>
<tr>
<td>rcopula.t</td>
<td>108</td>
</tr>
<tr>
<td>rlogitnorm</td>
<td>109</td>
</tr>
</tbody>
</table>
QRMlib-package

This package provides R-language code to investigate concepts in a Quantitative Risk Management book for those users without access to S-Plus.

Description

This is a free R-language translation of the S-Plus library (QRMlib) designed to accompany the book Quantitative Risk Management: Concepts, Techniques and Tools by Alexander J. McNeil, Rüdiger Frey and Paul Embrechts. It was built by Scott Ulman ⟨scottulman@hotmail.com⟩. A separate S-Plus version of the library can be downloaded from Alexander McNeil’s URL.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>QRMlib</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.4</td>
</tr>
<tr>
<td>Date</td>
<td>2007-04-08</td>
</tr>
<tr>
<td>Depends</td>
<td>R(>= 2.4.1),fCalendar.methods,fEcofin, mvtnorm, chron,its,Hmisc</td>
</tr>
<tr>
<td>License</td>
<td>GPL version 2 or newer</td>
</tr>
<tr>
<td>Packaged</td>
<td>April 8, 2007</td>
</tr>
<tr>
<td>Built</td>
<td>R 2.4.1; i386-pc-mingw32; 2007-04-08 12:00:00; windows</td>
</tr>
</tbody>
</table>
The package provides an entire library of methods to investigate concepts associated with QRM, including Market Risk, Credit Risk, and Operational Risk, as developed in the textbook. Additionally, it contains a set of chapter scripts which can be used to build many of the graphs and tables in the text. Under the library folder, look for folders Chap2-Chap8 which contain the scripts.

Note
The original S-Plus data files cac40, danish, DJ, diji, ftse100, FXGBP.RA W, hsi, nasdaq, nikkei, smi, sp500, xdax are all S-Plus ‘timeSeries’ object files.

Unfortunately, R-language has several different time-series classes, none of which coincides with the S-Plus version. The R-Metrics’ class ‘timeSeries’ (contained in library fCalendar) is the closest to an S-Plus timeSeries.

Hence data files built in this R-language translation are all R-Metrics ‘timeSeries’ types. This means you must load the fCalendar library in order to use the R-data files. The setup program should require automatic loading of fCalendar when you open QRMlib.

To automatically load the QRMlib package (and the fCalendar package), see profileLoadLibrary
To automatically load the data files and save them in the current workspace, see storeDataInWorkspace

Author(s)
S-Plus Original by Alexander McNeil; R-language port by Scott Ulman

Maintainer: Scott Ulman <scottulman@hotmail.com> for R-language version

References
Princeton Press, 2005

See Also
QRMBook-workspace and storeDataInWorkspace and profileLoadLibrary

Description
Follow these instructions to build a QRMBook workspace in R where you can run the book’s scripts which build most of the graphics plots and tables in the book Quantitative Risk Management: Concepts, Techniques and Tools by Alexander J. McNeil, Rüdiger Frey and Paul Embrechts.

The QRMlib contains scripts which explain topics in most QRM Book chapters.
The folders containing the scripts are named
“C:\Program Files\R\R-2.4.1\library\QRMlib\Chap2)”, “...\Chap3”, etc. You may open these scripts from within R by choosing File | Open Script from the R-menu and then moving to the appropriate Chapter script for the QRM Book. Many chapters contain multiple scripts.

Details

Instructions to Build the QRMBook workspace

The following example assumes you are using R version R-2.4.1. If you are using a later version, substitute your version number in the following instructions.

0. Be sure you have R closed.

1. Using MyComputer or Explorer Create a QRMBook subfolder beneath the folder C:\Program Files\R\R-2.4.1\Users.

2. Right-click the desktop and choose New | Shortcut from the menu.

3. Copy the following line (including quotation marks) into your clipboard:
 “C:\Program Files\R\R-2.4.1\bin\Rgui.exe”
 and paste the line into the box labeled “Type the location of the item”

4. Click the Next> button.

5. Type QRMBook (without any quotation marks) into the box labeled “Type a name of this shortcut”. Then click the Finish button.

6. Find the shortcut you just created on your desktop. It will be labeled “QRMBook”. Right-click the icon for the shortcut and choose ‘Properties’.

7. The ‘Start in’ box says “C:\Program Files\R\R-2.4.1\bin”. Modify it to read “C:\Program Files\R\R-2.4.1\Users\QRMBook” (be sure to include the quotation marks). Then click OK.

Note

You may now launch the QRMBook workspace by double-clicking the newly-created desktop icon. This will open R with a workspace pointing to ‘...\Users\QRMBook’.

However, there are still two problems with the workspace:

1. You want to avoid having to load the QRMlib each time you open the workspace. See profileLoadLibrary to resolve this issue

2. You want to use data without issuing the command data(filename) each time you open the workspace. See storeDataInWorkspace to resolve this issue.
Description

Data files must be loaded into your workspace before they can be used by scripts. The appropriate command to load data into a workspace is
\[\text{data(filename)} \]
where filename is the name of one of the data files WITHOUT its R extension. Hence use
\[\text{data(sp500)} \]
to load the data from the file sp500.R into the workspace.

Details

The scripts in the QRM book use data included with the installation. The following data files are located at
\[\text{C:\Program Files\R\R-2.4.1\library\QRMlib\data} \]

Note

When you exit the R program, you will be asked whether to save the current workspace environment. If you choose to do so, the data files which you have opened via \text{data(filename)} calls will be saved in the workspace so you don’t need to execute any subsequent \text{data(filename)} calls to get previously-loaded data. If you do not save the workspace, you must execute \text{data(filename)} each time you open a script in QRMBook workspace.

See Also

- \text{profileLoadLibrary}
- \text{storeDataInWorkspace}
Build .Rprofile File to Load QRM Library in QRMBook Workspace

Description

The QRMlib package (QRMlib.dll) must be loaded into your QRMBook workspace before its functions can be used by scripts.

The appropriate command to load a package into a workspace is

```r
library(QRMlib)
```

It will be more convenient for you to add a “.Rprofile” file to your QRMBook workspace than to invoke the `library(QRMlib)` command each time you start up. By adding `.Rprofile` to your workspace, you will eliminate the need to load the library each time you run the workspace.

See details below for two ways to install a .Rprofile file into your workspace.

Details

The installation program for QRMlib placed an .Rprofile file in the `...\library\QRMlib\inst\Chap2` folder. There is also a useful README.txt in the `...\library\QRMlib` folder.

In the Windows Explorer, merely copy the `.Rprofile` file from the QRM library Chap2 folder into the QRMBook workspace your previously created to run scripts (see QRMBook-workspace). Once the `.Rprofile` file exists in your QRMBook workspace, the QRMlib will automatically be loaded into the workspace.

Alternatively, you can build an `.Rprofile` file in your QRMBook folder using Notepad or some other text editor. Just perform the following steps:

0. Close your R-workspace if it is open.

1. Copy the next nine lines of code (starting with `.First` and ending with `}`) into the clipboard.

```r
.First <- function()
{
library(QRMlib)
}

.Last <- function()
{
detach(package:QRMlib)
}
```

2. Open Notepad: left-click the Start button, choose Run and type `notepad` into the box. We will try to save a file named “.Rprofile”. Note the entire file name is an extension with no prefix. I.e. there will be no letters prior to the ‘.’ and the type of file is an “Rprofile” type spelled with a capital R followed by all small letters.
3. Paste the copied code into Notepad.

4. In Notepad, choose File | Save As from the menu.

5. In the resulting box, click the Save as Type drop-down box and choose All Files. (We are NOT saving as a .txt type.)

6. Paste the path “C:\Program Files\R\R-2.4.1\users\QRMBook\Rprofile” into the File name box. Be sure to spell .Rprofile exactly as shown since R uses case sensitivity in opening files even though Windows does not.

7. Click the Save button.

You may now open your QRMBook workspace and the console should show that the QRMlib, fCalendar, fEcofin, mvtnorm, chron, its, and Hmisc libraries have been loaded.

Note
When you exit the R program, you will be asked whether to save the current workspace environment. If you choose to do so, the data files which you have opened via data(filename) calls will be saved in the workspace so you don’t need to execute any subsequent data(filename) calls to get previously-loaded data. If you do not save the workspace, you must execute data(filename) each time you open the QRMBook workspace.

See Also

QRMBook-workspace
storeDataInWorkspace

BiDensPlot Bivariate Density Plot

Description
makes perspective or contour plot of a bivariate density

Usage

BiDensPlot(func, xpts=c(-2, 2), ypts=c(-2, 2), npts=50, type="persp", ...)
npts
the number of subdivision points between x and y over the specified range xpts to ypts

type
"persp" or "contour" plot

... further parameters of density function

Side Effects
produces a contour or perspective plot

See Also
dnmnorm, dmt

Examples
BiDensPlot(func=dmnorm, mu=c(0,0), Sigma=equicorr(2,-0.7))

cac40
CAC 40 Stock Market Index

Description
This timeSeries data set provides the daily closing values of the French CAC 40 stock index for the period 1994 to March 2004

DJComponents
Dow Jones 30 Stock Prices

Description
This timeSeries data set provides the closing values of the Dow Jones 30 Stocks from 1991-2000

dji
Dow Jones Index

Description
This timeSeries data set provides the daily closing values of the Dow Jones index from 1980 to March 2004
Sterling Exchange Rates

Description

Exchange rates for major currencies (dollar, yen, euro, Swiss franc) against the pound for period 1987 to March 2004.

Generalized Extreme Value Distribution

Description

Cumulative probability, quantiles, density and random generation from the generalized extreme value distribution.

Usage

- pGEV(q, xi, mu=0, sigma=1)
- qGEV(p, xi, mu=0, sigma=1)
- dGEV(x, xi, mu=0, sigma=1, logvalue=FALSE)
- rGEV(n, xi, mu=0, sigma=1)

Arguments

- x: vector of values at which to evaluate density
- q: vector of quantiles
- p: vector of probabilities
- n: sample size
- xi: shape parameter
- mu: location parameter
- sigma: scale parameter
- logvalue: whether or not log values of density should be returned (useful for ML)

Value

Probability (pGEV), quantile (qGEV), density (dGEV) or random sample (rGEV) for the GEV distribution with shape xi (with location parameter mu and location parameter sigma).

See Also

fit.GEV, fit.GPD, pGPD
Examples

```r
## Not run:
# Build a loglikelihood function for MLE which can be called from optim() in fit.GEV()
negloglik <- function(theta)
  
  -sum(dGEV(excesses.nl,theta[1],abs(theta[2]),logvalue=TRUE));
}
## End(Not run)
```

GPD

Generalized Pareto Distribution

Description

Cumulative probability, quantiles, density and random generation from the generalized Pareto distribution.

Usage

```r
pGPD(q, xi, beta=1)
qGPD(p, xi, beta=1)
dGPD(x, xi, beta=1, logvalue=FALSE)
rGPD(n, xi, beta=1)
```

Arguments

- `x`: vector of values at which to evaluate density
- `q`: vector of quantiles
- `p`: vector of probabilities
- `n`: sample size
- `xi`: shape parameter
- `beta`: scale parameter
- `logvalue`: whether or not log values of density should be returned (useful for ML)

Value

Probability (pGPD), quantile (qGPD), density (dGPD) or random sample (rGPD) for the GPD with shape `xi`.

Author(s)

documentation by Scott Ulman for R-language distribution

See Also

`fit.GPD`, `pGEV`, `fit.GEV`
Gumbel Distribution

Description
Density, quantiles, and cumulative probability of the Gumbel distribution.

Usage

dGumbel(x, logvalue=FALSE)
quGumbel(p)
pGumbel(q)

Arguments

x vector of values at which to evaluate density
q vector of quantiles
p vector of probabilities
logvalue whether or not log values of density should be returned (useful for ML)

Value

Probability (pGumbel), quantile (qGumbel) and density (dGumbel) for the Gumbel distribution with shape xi.

Examples

Not run:
#If the shape parameter of the GEV is xi=0, then the distribution collapses to
#the Gumbel with parameters properly scaled:
x <- 2.5; mu <- 1.0; sigma = 2.5;
x = x - mu/sigma;
if(xi == 0) dGEVvalue <- dGumbel(xx, logvalue=TRUE) - log(sigma);
End(Not run)
Kendall

Kendall’s Rank Correlation

Description

calculates a matrix of Kendall’s rank correlations

Usage

Kendall(data, noforce=TRUE)

Arguments

- **data**: data matrix
- **noforce**: must be set to FALSE if you really want to calculate Kendall’s rank correlations for more than 5000 data (which will be slow)

Details

see pages 229-230 in QRM

Value

matrix of rank correlations

See Also

Spearman, fit.tcopula.rank

Examples

```r
data <- rmnorm(1000,d=3,rho=0.5);
Kendall(data);
```

MCECM.Qfunc

Optimization Function for MCECM Fitting of GH

Description

a functional form that must be optimized when fitting members of generalized hyperbolic family with an MCECM algorithm

Usage

MCECM.Qfunc(lambda, chi, psi, delta, eta, xi)
MCECMupdate

Arguments

- lambda: lambda parameter
- chi: chi parameter
- psi: pi parameter
- delta: delta statistic
- eta: eta statistic
- xi: xi statistic

Details

This is the Q2 function on page 82 of QRM

Value

Value of function

See Also

MCECMupdate, EMupdate, fit.mNH

MCECMupdate
MCECM Update Step for Generalized Hyperbolic

Description

Updates estimates of mixing parameters in EM estimation of generalized hyperbolic

Usage

MCECMupdate(data, mix.pars, mu, Sigma, gamma, optpars, optfunc, xieval=FALSE)

Arguments

- data: data matrix
- mix.pars: current values of lambda, chi and psi
- mu: current value of mu
- Sigma: current value of Sigma
- gamma: current value of gamma
- optpars: parameters we need to optimize over (may differ from case to case)
- optfunc: the function to be optimized
- xieval: is it necessary to evaluate the log moment xi?
Details

see Algorithm 3.14, steps (5) and (6) on page 83 of QRM

Value

list containing new estimates of mixing parameters as well as convergence information for optimization

See Also

fit.mNH

MEplot

Sample Mean Excess Plot

Description

Plots sample mean excesses over increasing thresholds.

Usage

```r
MEplot(data, omit = 3, labels=TRUE, ...)
```

Arguments

- `data` data vector or time series
- `omit` number of upper plotting points to be omitted
- `labels` whether or not axes are to be labelled
- `...` further parameters of MEplot function

Details

An upward trend in plot shows heavy-tailed behaviour. In particular, a straight line with positive gradient above some threshold is a sign of Pareto behaviour in tail. A downward trend shows thin-tailed behaviour whereas a line with zero gradient shows an exponential tail. Because upper plotting points are the average of a handful of extreme excesses, these may be omitted for a prettier plot.

See Also

fit.GPD

Examples

```r
# Sample mean excess plot of heavy-tailed Danish fire insurance data
data(danish);
MEplot(danish);
```
MardiaTest \hspace{1cm} Mardia’s Tests of Multinormality

Description

conducts Mardia’s tests of multinormality based on multivariate skewness and kurtosis statistics

Usage

MardiaTest(data)

Arguments

data \hspace{1cm} data matrix

Details

see page 70 of QRM

Value

vector consisting of skewness statistic, p-value for skewness statistic, kurtosis statistic and p-value for kurtosis statistic

See Also

jointnormalTest

Examples

data <- rmnorm(1000,d=10,rho=0.6);
MardiaTest(data);

Pconstruct \hspace{1cm} Assemble a Correlation Matrix for ML Copula Fitting

Description

takes a vector of values representing the terms of a lower triangular matrix A with ones on the diagonal and calculates the correlation matrix corresponding to the covariance matrix AA’

Usage

Pconstruct(theta)
Pdeconstruct

Disassemble a Correlation Matrix for ML Copula Fitting

Description

takes a correlation matrix P and returns the elements of a lower-triangular matrix A with ones on the diagonal such that P is the correlation matrix corresponding to the covariance matrix AA’

Usage

Pdeconstruct(P)

Arguments

P a correlation matrix

Details

see page 235 in QRM

Value

elements of a lower-triangular matrix
QQplot

See Also

- `pconstruct`, `fit.gausscopula`, `fit.tcopula`

Examples

```r
P <- pconstruct(c(1,2,3,4,5,6));
Pdeconstruct(P);
```

QQplot
Generic Quantile-Quantile Plot

Description

constructs a quantile-quantile plot against a given reference distribution

Usage

```r
QQplot(data, position=0.5, reference="normal", ...)
```

Arguments

- `data` vector of data
- `position` determines the plotting positions (see `ppoints` in R-help)
- `reference` name of reference distribution (normal, exp, student, etc.)
- `...` any further parameters required by quantile function of reference distribution

Details

Special forms like ParetoQQ plots can also be created via this function. E.g., to create a ParetoQQ plot, merely pass `log(data)` in place of data as the first parameter and use `reference="exp"` as the reference distribution. The ParetoQQ plot should provide a linear graph when a log transform of the data is plotted against the exponential distribution. See Beirlant et al, "Statistics of Extremes", Chapter 1.2.1 for descriptions of various QQ plots.

Value

NULL returned

Side Effects

QQ-plot is created on graphical device

See Also

- `qqnorm`, `dghyp`
RiskMeasures

Examples

```r
QQplot(rnorm(1000),ref="normal");
QQplot(rexp(1000),ref="exp");
```

RiskMeasures
Calculate Risk Measures from GPD Fit

Description

calculates risk measures like VaR and expected shortfall based on a generalized Pareto model fitted to losses over a high threshold

Usage

```r
RiskMeasures(out, p)
```

Arguments

- `out` results of a GPD fit to excesses over high thresholds
- `p` vector of probability levels for risk measures

Details

see pages 282-284 of QRM

Value

matrix with quantile and shortfall estimates for each probability level

See Also

`fit.GPD`, `showRM`

Examples

```r
data(danish);
out <- fit.GPD(danish, 10);
RiskMeasures(out, c(0.99, 0.999));
```
Spearman

Spearman’s Rank Correlation

Description

calculates a matrix of Sperman’s rank correlations

Usage

Spearman(data)

Arguments

data data matrix

Details

see pages 229-230 in QRM

Value

matrix of rank correlations

See Also

Kendall

Examples

data <- rmnorm(1000,d=3,rho=0.5);
Spearman(data);

TimeSeriesClassRMetrics
timeSeries Class and Methods

Description

A collection and description of functions and methods dealing with regular and irregular 'timeSeries' objects. Dates and times are implemented as 'timeDate' objects. Included are functions and methods for the generation and representation of 'timeSeries' objects, and for mathematical operations.

The functions and methods for the Generation of 'timeSeries' Objects are:

‘timeSeries()’ Creates a 'timeSeries’ object from scratch,
‘read.timeSeries()’ Reads a ‘timeSeries’ from a spreadsheet file,
The functions and methods for the Representation of 'timeSeries' Objects are:

- 'seriesData()' S3: Extracts data slot from a 'timeSeries',
- 'seriesPositions()' S3: Extracts positions slot from a 'timeSeries',
- 'start.timeSeries()' S3: Extracts start date of a 'timeSeries',
- 'end.timeSeries()' S3: Extracts end date of a 'timeSeries',
- 'as.vector.timeSeries()' S3: Converts a 'timeSeries' to a vector,
- 'as.matrix.timeSeries()' S3: Converts a 'timeSeries' to a matrix,
- 'as.data.frame.timeSeries()' S3: Converts a 'timeSeries' to a data.frame.

The functions and methods for Math Operations of 'timeSeries' Objects are:

- 'applySeries()' S3: Applies a function to margins of a 'timeSeries',
- 'alignDailySeries()' S3: Aligns a daily 'timeSeries' to new positions,
- 'cut()' S3: Cuts out a piece from a 'timeSeries' object,
- 'mergeSeries()' S3: Merges a 'timeSeries' object with a 'matrix',
- 'ohlcDailyPlot()' S3: Plots open high low close bar chart,
- 'revSeries()' S3: Reverts the order of 'timeSeries' object,
- 'diffSeries()' S3: Takes differences from a 'timeSeries' object,
- 'lagSeries()' S3: Lags a 'timeSeries' object,
- 'outlierSeries()' S3: Removes outliers from a 'timeSeries' object,
- 'returnSeries()' S3: Computes returns from a 'timeSeries' object,
- 'logSeries()' S3: Returns logarithms of a 'timeSeries' object,
- 'absSeries()' S3: Returns absolute values of a 'timeSeries' object.

Functions calls include:

timeSeries(data, charvec, units = NULL, format = "ISO", zone = "GMT", FinCenter = myFinCenter, recordIDs = data.frame(), title = NULL, documentation = NULL, ...)

read.timeSeries(file, zone = "GMT", FinCenter = "", title = "", documentation = "", sep = ";")

as.timeSeries(x, dimnames = TRUE, format = "")

is.timeSeries(object)

The following are S3 method for class 'timeSeries':

print(x, ...)
plot(x, reference.grid = TRUE, lty = 1, ...)
lines(x, ...)
Ops(e1, e2)
 x[i = min(1, nrow(x@Data)):nrow(x@Data),
 j = min(1, ncol(x@Data)):ncol(x@Data))
 head(x, ...)
 tail(x, ...)

seriesData(object)
seriesPositions(object)
The following are S3 method for class 'timeSeries':
 start(x, ...)
 end(x, ...)
 as.vector(x, mode = "any")
 as.matrix(x)
 as.data.frame(x, row.names = NULL, optional = NULL)

applySeries(x, from = NULL, to = NULL, by=c("monthly","quarterly"), FUN = colAvgs, units = NULL, ...);
cut(x, from, to);
diffSeries(x, lag = 1, diff = 1, trim = FALSE, pad = NA);
lagSeries(x, k = 1, trim = FALSE, units = NULL);
outlierSeries(x, sd = 10, complement = TRUE);
mergeSeries(x, y, units = NULL);
returnSeries(x, type = c("continuous", "discrete"), percentage = FALSE, trim = TRUE, digits = 4,
 units = NULL);
revSeries(x);
logSeries(x);
absSeries(x);
alignDailySeries(x, method = c("before", "after", "interp", "fillNA"), include.weekends = FALSE,
 units = NULL);
ohlcDailyPlot(x, volume = TRUE, colOrder = c(1:5), units = 1e6, xlab = c("Date", "Date"), ylab =
 c("Price", "Volume"), main = c("O-H-L-C", "Volume"), grid.nx = 7, grid.lty = "solid", ...);

Details
Generation of Time Series Objects:
We have defined a timeSeries class which is in many aspects similar to the S-Plus class with the
same name, but has also some important differences. The class has seven Slots, the 'Data' slot
which holds the time series data in matrix form, the 'position' slot which holds the time/date as a
character vector, the 'format' and 'FinCenter' slots which are the same as for the 'timeDate' object,
the 'units' slot which holds the column names of the data matrix, and a 'title' and a 'documentation'
slot which hold descriptive character strings. Date and time is managed in the same way as for
timeDate objects.

Author(s)
documentation by Scott Ulman for R-language distribution
aggregateMonthlySeries

aggregateMonthlySeries() method

Description

This is one of several substitutes for the S-Plus language method

\texttt{aggregateSeries(timeseries, FUN=max, mean, colAvg, colSums,..., by=weeks,months,quarters,...)}.

The R-language \texttt{aggregateMonthlySeries()} function allows the user to calculate a less granular timeseries (monthly) from a daily time series by using a statistic like the max, mean, sum, etc. Note the R-methods do NOT contain a \texttt{by=“months"} parameter so the R-language user must select either the \texttt{aggregateWeeklySeries} method, the \texttt{aggregateMonthlySeries()} method, or the \texttt{aggregateQuarterlySeries()} method to get the desired result.

Usage

\texttt{aggregateMonthlySeries(timeseries, FUNC = colSums)}

Arguments

\begin{itemize}
 \item \texttt{timeseries} a (usually) daily timeSeries (R-Metrics type from fCalendar) from which the user wants to extract a monthly maximum (or monthly mean) timeSeries
 \item \texttt{FUNC} The name of a function to use in aggregating the data. For example the max, mean, min, etc. The default is \texttt{colSums}.
\end{itemize}

Details

For example, the user might want to create a series of monthly \texttt{colSums} returns from a daily time series of returns. Alternatively, (s)he might want the quarterly or weekly \texttt{mean} series. In either case, a less granular set of quarterly/monthly/weekly values is calculated from a daily timeSeries object. Unfortunately, the R-Metrics package has not yet implemented an R-version of the S-Plus \texttt{aggregateSeries()} method.

The \texttt{aggregateWeeklySeries()}, \texttt{aggregateMonthlySeries()}, and the \texttt{aggregateQuarterlySeries()} are interim functions developed to convert daily timeSeries to weekly, monthly, or quarterly timeSeries objects via a statistic like the max, mean, \texttt{colAvg}, or \texttt{ColSums}.

These functions exist in the \texttt{functionsUtility.R} file of the library.

Value

A monthly timeSeries object characterized by some statistic like mean, max, min of the daily series over a month. The positions attribute (\texttt{dates <- rseries@positions}) of the new time series will be the LAST DAYS OF THE RESPECTIVE MONTHS for the timeSeries object.
aggregateQuarterlySeries

Author(s)

documentation by Scott Ulman for R-language distribution

See Also

aggregateWeeklySeries, aggregateQuarterlySeries

Examples

load nasdaq data set:
data(nasdaq);
Create minus daily return series:
nreturns <- -mk.returns(nasdaq);
convert to monthly series using max value from each month
(rather than colSums):
monthly.maxima <- aggregateMonthlySeries(nreturns, FUNC=max);
Not run:
Ret.DJ <- mk.returns(DJ);
Choose only 10 of the 30 stocks:
selection1 <- c("AXP", "EK", "BA", "C", "KO", "MSFT", "HWP",
 "INTC", "JPM", "DIS");
partialDJ30dailyTS <- Ret.DJ[, selection1];
partialDJ30daily <- cut(partialDJ30dailyTS, from="1992-12-31",
 to="2000-12-31");
partialDJ30monthlyTS <- aggregateMonthlySeries(partialDJ30daily,
 FUNC=colSums);
End(Not run)

aggregateQuarterlySeries

aggregateQuarterlySeries() method

Description

This is one of several substitutes for the S-Plus language method
aggregateSeries(timeseries, FUN=max, mean, colAvg,
colSums,...., by=weeks, months, quarters,....).
The R-language aggregateQuarterlySeries() function allows the user to calculate a less granular
timeseries (monthly) from a daily time series by using a statistic like the max, mean, sum, colSums,
etc. Note the R-methods do NOT contain a by="quarters" parameter so the R-language user must
select either the the aggregateWeeklySeries method, the aggregateMonthlySeries() method, or
the aggregateQuarterlySeries() method to get the desired result.

Usage

aggregateQuarterlySeries(timeseries, FUNC = colSums)
aggregateQuarterlySeries

Arguments

timeseries a (usually) daily timeSeries (R-Metrics type from fCalendar) from which the user wants to extract a quarterly colSums (or quarterly mean) timeSeries

FUNC The name of a function to use in aggregating the data. For example the max, mean, min, etc. Default is 'colSums'.

Details

For example, the user might want to create a series of quarterly colSums returns from a daily time series of returns. Alternatively, (s)he might want the quarterly mean series. In either case, a less granular (quarterly) set of values is calculated from a daily timeSeries object. Unfortunately, the R-Metrics package has not yet implemented an R-version of the S-Plus aggregateSeries() method. The aggregateWeeklySeries(), aggregateMonthlySeries(), and the aggregateQuarterlySeries() are interim functions developed to convert daily timeSeries to weekly, monthly, or quarterly timeSeries objects via a statistic like the max, mean, colAvg, or ColSums. These functions exist in the functionsUtility.R file of the library.

Value

A quarterly timeSeries object characterized by some statistic like mean, max, min of the daily series over a quarter. The positions attribute (dates <- rseries@positions) of the new time series will be the LAST DAYS OF THE RESPECTIVE QUARTERS for the timeSeries object.

Author(s)

documentation by Scott Ulman for R-language distribution

See Also

aggregateWeeklySeries, aggregateMonthlySeries

Examples

#load nasdaq data set:
data(nasdaq);
#Create daily return series:
nreturns <- -mk.returns(nasdaq)
#convert to quarterly series using maximum value from each quarter:
quarterly.maxima <- aggregateQuarterlySeries(nreturns, FUNC=max);
Not run:
Ret.DJ <- mk.returns(DJ);
#Choose only 10 of the 30 stocks:
selection1 <- c("AXP","EK","BA","C","KO","MSFT","HWP", "INTC","JPM","DIS");
partialDJ30dailyTS <- Ret.DJ[,selection1];
partialDJ30daily <- cut(partialDJ30dailyTS, from="1992-12-31", to="2000-12-31");
partialDJ30quarterlyTS <- aggregateQuarterlySeries(partialDJ30daily, FUNC= colSums);
End(Not run)
aggregateSignalSeries

aggregateSignalSeries() method

Description

This is a substitute for the S-Plus language method
aggregateSeries(signalSeries, FUN=max, mean, colAvg,...,
by=90,...).

Usage

aggregateSignalSeries(x, pos, AGGFUNC, together = FALSE,
drop.empty = TRUE, include.ends = FALSE, adj, offset, colnames, by)

Arguments

x The data series to which the AGGFUNC will be applied
pos a numeric sequence describing the respective positions of each element in the
data set
AGGFUNC the function to be applied to the data set x
together if TRUE, pass all columns of x together into AGGFUNC; default is to pass each
column separately into AGGFUNC for each aggregation block.
drop.empty logical value telling whether or not to drop aggregation blocks with no positions
to aggregate from the output (default is to drop them)
include.ends logical value telling whether to include positions before the first given aggre-
gation block and after the last in the first/last blocks; default would not include
those positions in the output at all.
adj if provided, adjust the positions of the output series so that they lie a fraction adj
towards the blocks ending position; default is to use the lower end of the block
for the output position. 0.5 would use the center of the aggregation block for the
output position, and 1.0 would use the upper end of the block.
offset as an alternative to adj, you can provide a constant offset to add to the lower end
of the aggregation block to get the output series positions.
colnames new column names for the output series. Default is to use the same names as the
input series if the output series has the same width
by The number of positions to include for each function application. For example
by=90 implies the function will be applied to successive groups of 90 data items.

Details

Input a signalSeries object as parameter x. Input an a function (AGGFUNC) to apply to aggre-
gate data into many smaller subsamples. Use either the ‘pos’ or ‘by’ parameter to indicated how
to aggregate the data. E.g. ‘by=90’ will chop the data into separate segments of length 90. The
AGGFUNC will then be applied to each aggregation (segment). The R-language `aggregateSignalSeries()` function allows the use of a function evaluation (like Pearson or Kendall correlations) to create from data aggregated into granular group using the by parameter. E.g the `by=90` parameter will divide the dataset into groups of 90 observations and will apply the input function to each group of 90 data items. Hence in 360 total observations, a total of four separate correlation functions may be evaluated on aggregated data sets each containing 90 observations.

Value

A new signalSeries whose positions were adjusted via the `by` parameter. Hence the new signalSeries data slot contains types returned by the AGGFUN. For example, if AGGFUNC is ‘pearson’ as in the example, then the data slot contains a vector of correlation coefficients each calculated by splitting the input data into successive blocks specified by using the number of items in ‘by’ for each new block. For each block, the AGGFUNC is applied to each column (or all columns joined if parameter ‘together=TRUE’) to calculate the appropriate result. The data slot contains the result applied to each successive block.

Author(s)

documentation by Scott Ulman for R-language distribution

See Also

`signalSeries`

Examples

```r
## Not run:
set.seed(13);
m <- 90;
n <- 3000;
#Generate a 'matrix' class of simulated values with 2 columns and m*n rows
dataSim <- rmt(m*n,df=3,rho=0.5,d=2);
#create a signal series from simulated data:
dataSimSS <- signalSeries(dataSim);
#local function
pearson <- function(x) cor(x)[1,2];
pearson.cors <- aggregateSignalSeries(dataSimSS,by=m,
                                      together=T,AGGFUNC=pearson);
#Extract the data part only to see a vector of correlation
#coefficients for each contiguous subblock
#in the entire original series.
pearson.cors.data <- pearson.cors@data;
## End(Not run)
```
aggregateWeeklySeries

aggregateWeeklySeries() method

Description

This is one of several substitutes for the S-Plus language method
aggregateSeries(timeseries, FUN=max, mean, colAvg, colSums, ..., by=weeks, months, quarters, ...).

The R-language aggregateWeeklySeries() function allows the user to calculate a less granular time-series (weekly) from a daily time series by using a statistic like the max, mean, sum, etc. Note the R-methods do NOT contain a by="months" parameter so the R-language user must select either the aggregateWeeklySeries method, the aggregateMonthlySeries() method, or the aggregateQuarterlySeries() method to get the desired result.

Usage

aggregateWeeklySeries(timeseries, FUNC = colSums)

Arguments

timeseries a daily timeSeries (R-Metrics type from fCalendar) from which the user wants to extract a less granular weekly average timeSeries

FUNC The name of a function to use in aggregating the data. For example the colAvg, max, mean, min, etc. The default is colSums

Details

For example, the user might want to create a series of weekly colSums returns from a daily time series of returns. Alternatively, (s)he might want the quarterly mean series. In either case, a less granular set of return values is calculated from a daily timeSeries object. Unfortunately, the R-Metrics package has not yet implemented an R-version of the S-Plus aggregateSeries() method.

The aggregateWeeklySeries(), aggregateMonthlySeries(), and the aggregateQuarterlySeries() are interim functions developed to convert daily timeSeries to weekly, monthly, or quarterly time-Series objects via a statistic like the max, mean, colAvg, or ColSums.

These functions exist in the functionsUtility.R file of the library.

Value

A weekly timeSeries object characterized by some statistic like colAvg, of the daily series over a month. The positions attribute (dates <- rseries@positions) of the new time series will be the LAST DAYS OF THE RESPECTIVE weeks for the timeSeries object.

Author(s)

documentation by Scott Ulman for R-language distribution
besselM3

Modified Bessel Function of 3rd Kind

Description

Calculates modified Bessel function of third kind.

Usage

```r
besselM3(lambda=9/2, x=2, logvalue=FALSE)
```

Arguments

- `lambda`: Parameter of Bessel function
- `x`: 2nd parameter of Bessel function
- `logvalue`: Whether or not log value should be returned

Details

See page 497 of QRM and references given there.

Value

A vector of values of Bessel function with same length as `x`.

Examples

```r
# Load nasdaq data set:
data(nasdaq);
# Create daily return series:
nreturns <- mk.returns(nasdaq)
# Convert to weekly series using colSums values (adding daily returns to get weekly)
weekly.nasdaq <- aggregateWeeklySeries(nreturns, FUNC=colSums);
## Not run:
Ret.DJ <- mk.returns(DJ);
# Choose only 10 of the 30 stocks:
selection1 <- c("AXP","EK","BA","C","KO","MSFT","HWP",
"INTC","JPM","DIS");
partialDJ30dailyTS <- Ret.DJ[,selection1];
partialDJ30daily <- cut(partialDJ30dailyTS, from="1992-12-31",
to="2000-12-31");
partialDJ30weeklyTS <- aggregateWeeklySeries(partialDJ30daily,
FUNC=colSums);
## End(Not run)
```
beta (stats)

The Beta Distribution

Description

Density, distribution function, quantile function and random generation for the Beta distribution with parameters `shape1` and `shape2` (and optional non-centrality parameter `ncp`).

Arguments

- `x, q` vector of quantiles.
- `p` vector of probabilities.
- `n` number of observations. If `length(n) > 1`, the length is taken to be the number required.
- `shape1, shape2` positive parameters of the Beta distribution.
- `ncp` non-centrality parameter.
- `log, log.p` logical; if TRUE, probabilities `p` are given as log(p).
- `lower.tail` logical; if TRUE (default), probabilities are \(P(X \leq x) \), otherwise, \(P(X > x) \).

Details

Usage:

- `dbeta(x, shape1, shape2, ncp=0, log = FALSE)`;
- `pbeta(q, shape1, shape2, ncp=0, lower.tail = TRUE, log.p = FALSE)`;
- `qbeta(p, shape1, shape2, lower.tail = TRUE, log.p = FALSE)`;
- `rbeta(n, shape1, shape2)`;

The Beta distribution with parameters `shape1 = a` and `shape2 = b` has density

\[
f(x) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} x^a (1 - x)^b
\]

for \(a > 0, b > 0 \) and \(0 \leq x \leq 1 \) where the boundary values at \(x = 0 \) or \(x = 1 \) are defined as by continuity (as limits).

The mean is \(a/(a + b) \) and the variance is \(ab/((a + b)^2(a + b + 1)) \).

`pbeta` is closely related to the incomplete beta function. As defined by Abramowitz and Stegun 6.6.1

\[
B_x(a,b) = \int_0^x t^{a-1}(1 - t)^{b-1} dt,
\]

and 6.6.2 \(I_x(a,b) = B_x(a,b)/B(a,b) \) where \(B(a,b) = B_1(a,b) \) is the Beta function (\texttt{beta}).

`I_x(a,b)` is `pbeta(x,a,b)`.
Value

dbeta gives the density, pbeta the distribution function, qbeta the quantile function, and rbeta generates random deviates.

Author(s)

documentation by Scott Ulman for R-language distribution

References

See Also
dgamma, For more information on the beta function and others, see Special.

Examples

x <- seq(0, 1, length=21);
dbeta(x, 1, 1); #actually a standard uniform density
pbeta(x, 1, 1) #actually a standard uniform distribution

cal.beta

Calibrate Beta Mixture of Bernoullis

Description

calibrates a beta mixture distribution on unit interval to give an exchangeable Bernoulli mixture model with prescribed default and joint default probabilities

Usage

cal.beta(pil=0.1837, pi2=0.0413)

Arguments

- **pil**: default probability
- **pi2**: joint default probability

Details

see pages 354-355 in QRM
cal.claytonmix

Calibrate Mixture of Bernoullis Equivalent to Clayton Copula Model

Description

calibrates a mixture distribution on unit interval to give an exchangeable Bernoulli mixture model with prescribed default and joint default probabilities. The mixture distribution is the one implied by a Clayton copula model of default.

Usage

cal.claytonmix(pi1=0.1837, pi2=0.0413)

Arguments

pi1 default probability
pi2 joint default probability

Value

parameters a and b of beta mixing distribution

See Also

cal.claytonmix, cal.probitnorm, rbinomial.mixture

Examples

pi.B <- 0.2; pi2.B <- 0.05;
probitnorm.pars <- cal.probitnorm(pi.B,pi2.B);
probitnorm.pars;
beta.pars <- cal.beta(pi.B,pi2.B);
Not run:
claytonmix.pars <- cal.claytonmix(pi.B,pi2.B);
qu <- (1:1000)/1001;
qu <- q[q<0.25];
p.probitnorm <- pprobitnorm(q,probitnorm.pars[1],
 probitnorm.pars[2]);
p.beta <- pbeta(q, beta.pars[1], beta.pars[2]);
p.claytonmix <- pclaytonmix(q,claytonmix.pars[1],
 claytonmix.pars[2]);
scale <- range((1-p.probitnorm),(1-p.beta),
 (1-p.claytonmix));
plot(q, (1 - p.probitnorm), type = "l", log = "y",
 xlab = "q", ylab = "P(Q>q)", ylim=scale);
lines(q, (1 - p.beta), col = 2);
lines(q, (1 - p.claytonmix), col = 3);
abline(h = 0.01);
legend(0.05, 1e-4, c("Probit-normal", "Beta",
 "Clayton-Mixture"), lty=rep(1,3),col = (1:3));
End(Not run)
Details

see page 362 in QRM

Value

parameters pi and theta for Clayton copula default model

See Also

cal.beta, cal.probitnorm, rclaytonmix, rbinomial.mixture

Examples

pi.B <- 0.2; pi2.B <- 0.05
Not run:
probitnorm.pars <- cal.probitnorm(pi.B, pi2.B)
probitnorm.pars
beta.pars <- cal.beta(pi.B, pi2.B)
beta.pars
End(Not run)
claytonmix.pars <- cal.claytonmix(pi.B, pi2.B)
claytonmix.pars
Not run:
q <- (1:1000)/1001;
q <- q[q<0.25];
p.probitnorm <- pprobitnorm(q, probitnorm.pars[1],
 probitnorm.pars[2]);
p.beta <- pbeta(q, beta.pars[1], beta.pars[2]);
p.claytonmix <- pclaytonmix(q,claytonmix.pars[1],
 claytonmix.pars[2]);
scale <- range((1-p.probitnorm),(1-p.beta),(1-p.claytonmix));
plot(q, (1 - p.probitnorm), type = "l", log = "y", xlab = "q",
 ylab = "P(Q>q)", ylim=scale);
lines(q, (1 - p.beta), col = 2);
lines(q, (1 - p.claytonmix), col = 3);
abline(h = 0.01);
legend(0.05, 1e-4, c("Probit-normal", "Beta", "Clayton-Mixture"),
 lty=rep(1,3),col = (1:3))
End(Not run)
Usage

```
cal.probitnorm(p1=0.1837, p2=0.0413)
```

Arguments

- **p1**: default probability
- **p2**: joint default probability

Details

see page 354 in QRM

Value

parameters mu and sigma for probitnormal mixing distribution as well as the implied asset correlation rho.asset

See Also

```
cal.beta, cal.claytonmix, dprobitnorm, rbinomial.mixture
```

Examples

```
pi.B <- 0.2; pi2.B <- 0.05;
probitnorm.pars <- cal.probitnorm(pi.B,pi2.B);
probitnorm.pars;
## Not run:
beta.pars <- cal.beta(pi.B,pi2.B);
beta.pars;
claytonmix.pars <- cal.claytonmix(pi.B,pi2.B);
claytonmix.pars;
q <- (1:1000)/1001;
q <- q[q<0.25];
p.probitnorm <- pprobitnorm(q,probitnorm.pars[1],
probitnorm.pars[2]);
p.beta <- pbeta(q, beta.pars[1], beta.pars[2]);
p.claytonmix <- pclaytonmix(q,claytonmix.pars[1],
claytonmix.pars[2]);
scale <- range((1-p.probitnorm),(1-p.beta),
(1-p.claytonmix));
plot(q, (1 - p.probitnorm), type = "l", log = "y",
xlab = "q", ylab = "P(Q>q)", ylim=scale);
lines(q, (1 - p.beta), col = 2);
lines(q, (1 - p.claytonmix), col = 3);
abline(h = 0.01);
legend(0.05, 1e-4, c("Probit-normal", "Beta",
"Clayton-Mixture"), lty=rep(1,3),col = c(1:3));
## End(Not run)
```
claytonmix

Mixing Distribution on Unit Interval Yielding Clayton Copula Model

Description
density, cumulative probability, and random generation for a mixture distribution on the unit interval which gives an exchangeable Bernoulli mixture model equivalent to a Clayton copula model

Usage
dclaytonmix(x, pi, theta)
pclaytonmix(q, pi, theta)
rclaytonmix(n, pi, theta)

Arguments
x values at which density should be evaluated
q values at which cumulative distribution should be evaluated
n sample size
pi parameter of distribution
theta parameter of distribution

Details
see page 362 in QRM

Value
values of density (dclaytonmix), distribution function (pclaytonmix) or random sample (rclaytonmix)

Author(s)
documentation by Scott Ulman for R-language distribution

See Also
dbeta, dprobitnorm

Examples
#probability of only one obligor defaulting B class (see Table 8.6 in QRM book)
pi.B <- 0.0489603;
#joint probability of two obligors defaulting B class (see Table 8.6 in QRM book)
pi2.B <- 0.003126529;
Calibrate Clayton copula model to pi.B and pi2.B
claytonmix.pars <- cal.claytonmix(pi.B,pi2.B)
We could also look at mixing densities. Get probability of Clayton mix
This picture essentially shows large sample asymptotics
Build 1000 equally-spaced values on unit interval (multiples of .000999);
discard all values except those below 0.25
q <- (1:1000)/1001;
q <- q[q<0.25]; # reduce to lowest 250 values
get probabilities for each of 250 lowest values on unit interval
d.claytonmix <- dclaytonmix(q,claytonmix.pars[1],claytonmix.pars[2]);

CovToCor

Covariance To Correlation Matrix

Description

extracts the correlation matrix from a covariance matrix

Usage

CovToCor(mat)

Arguments

- **mat**

a covariance matrix

Details

This is a custom function built by Alexander McNeil. It provides the same functionality as R’s built in cov2cor() method in the stats package.

Value

a correlation matrix

See Also

equicorr cov2cor

Danish

Danish Data

Description

Danish fire insurances losses from 1980 to 1990 in millions of kroner
dcopula.clayton Bivariate Clayton Copula Density

Description

evaluates density of bivariate Clayton copula

Usage

dcopula.clayton(u, theta, logvalue=FALSE)

Arguments

u matrix of dimension n times 2, where 2 is the dimension of the copula and n is the number of vector values at which to evaluate density
theta parameter of Clayton copula
logvalue whether or not log density values should be returned (useful for ML)

Details

see page 192 of QRM for Clayton copula

Value

vector of density values of length n

See Also

fit.Archcopula2d, dcopula.gauss, dcopula.t, dcopula.gumbel

Examples

Not run:
#define a function:
normal.metaclayton <- function(x,theta);
{
 exp(dcopula.clayton(apply(x,2,pnorm),theta,logvalue=TRUE) +
 apply(log(apply(x,2,dnorm)),1,sum));
}
#use function to create perspective plot for bivariate density:
BiDensPlot(normal.metaclayton,xpts=ll,ypts=ll,npts=80,theta=2.2);
End(Not run)
dcopula.gauss
Gauss Copula Density

Description

evaluates density of Gauss copula

Usage

dcopula.gauss(u, P, logvalue=FALSE)

Arguments

u
matrix of dimension n times d, where d is the dimension of the copula and n is the number of vector values at which to evaluate density

P
correlation matrix of Gauss copula

logvalue
whether or not log density values should be returned (useful for ML)

Details

see pages 197 and 234 in QRM

Value

vector of density values of length n

See Also

dmnorm, dcopula.clayton, dcopula.t, dcopula.gumbel

Examples

```r
## Not run:
ll <- c(0.01,0.99);
# create perspective plot for bivariate density:
BiDensPlot(func=dcopula.gauss,xpts=ll,ypts=ll,P=equicorr(2,0.5));
## End(Not run)
```
Bivariate Gumbel Copula Density

dcopula.gumbel

Description

evaluates density of bivariate Gumbel copula

Usage

dcopula.gumbel(u, theta, logvalue=FALSE)

Arguments

- **u**: matrix of dimension n times 2, where 2 is the dimension of the copula and n is the number of vector values at which to evaluate density
- **theta**: parameter of Gumbel copula
- **logvalue**: whether or not log density values should be returned (useful for ML)

Details

see page 192 of QRM for Gumbel copula

Value

vector of density values of length n

See Also

fit.Archcopula2d, dcopula.clayton, dcopula.t, dcopula.gauss

Examples

```r
## Not run:
# define a function:
normal.metagumbel <- function(x,theta)
{
  exp(dcopula.gumbel(apply(x,2,pnorm),theta,logvalue=TRUE) +
  apply(log(apply(x,2,dnorm)),1,sum));
}
# use function to create perspective plot for bivariate density:
BiDensPlot(normal.metagumbel,xpts=ll,ypts=ll,npts=80,theta=2);
## End(Not run)
```
Description

evaluates density of t copula

Usage

dcopula.t(u, nu, P, logvalue=FALSE)

Arguments

u
matrix of dimension n times d, where d is the dimension of the copula and n is the number of vector values at which to evaluate density

nu
degrees of freedom of t copula

P
correlation matrix of t copula

logvalue
whether or not log density values should be returned (useful for ML)

Details

see pages 197 and 235 of QRM

Value

vector of density values of length n

See Also

dmt, dcopula.clayton, dcopula.gumbel, dcopula.gauss

Examples

Not run:
ll <- c(0.01,0.99);
#create perspective plot for bivariate density:
BiDensPlot(func=dcopula.t,xpts=ll,ypts=ll,nu=4,P=equicorr(2,0.5));
#define an internal function:
normal.metat <- function(x,nu,P)
{
 exp(dcopula.t(apply(x,2,pnorm),nu,P,logvalue=TRUE) +
 apply(log(apply(x,2,dnorm)),1,sum));
}
#use function to create perspective plot for bivariate density:
BiDensPlot(normal.metat,xpts=ll,ypts=ll,npts=80,nu=4,P=equicorr(2,0.71));
End(Not run)
dmnorm

Multivariate Normal Density

Description

evaluates multivariate normal density

Usage

dmnorm(x, mu, Sigma, logvalue=FALSE)

Arguments

x
matrix with n rows and d columns; density is evaluated at each vector of row values
mu
mean vector
Sigma
covariance matrix
logvalue
should log density be returned; default is FALSE

Value

vector of length n containing values of density or log-density

Author(s)

documentation by Scott Ulman for R-language distribution

See Also

dmt, dmghyp

Examples

Normal distribution: visualization, simulation, estimation
BiDensPlot(func=dmnorm, mu=c(0,0), Sigma=equicorr(2,-0.7));
dmt
Multivariate Student t Density

Description

evaluates multivariate Student t density

Usage

\[\text{dmt}(x, \nu, \mu, \Sigma, \text{logvalue}=\text{FALSE}) \]

Arguments

- **x**: matrix with n rows and d columns; density is evaluated at each vector of row values
- **nu**: degree of freedom parameter
- **mu**: location vector
- **Sigma**: dispersion matrix
- **logvalue**: should log density be returned; default is FALSE

Value

vector of length n containing values of density or log-density

See Also

- dmnorm, dmhyp

Examples

```r
### t distribution: visualization, simulation, estimation
BiDensPlot(func=dmt, xpts=c(-4,4), ypts=c(-4,4), mu=c(0,0),
Sigma=equicorr(2,-0.7), nu=4);
```

dsmhgyhyp
Symmetric Multivariate Generalized Hyperbolic Distribution

Description

Density of elliptical subfamily of multivariate generalized hyperbolic family. The symmetric family is a normal-variance mixture since the gamma parameter associated with the mean mixture is by assumption equal to zero.

Usage

\[\text{dsmhgyhyp}(x, \lambda, \chi, \psi, \mu, \Sigma, \text{logvalue}=\text{FALSE}) \]
Arguments

- **x**: Matrix with n rows and d columns; density is evaluated at each vector of row values.
- **lambda**: Scalar parameter.
- **chi**: Scalar parameter.
- **psi**: Scalar parameter.
- **mu**: Location vector.
- **Sigma**: Dispersion matrix.
- **logvalue**: Should log density be returned; default is FALSE.

Details

See page 78 in QRM for joint density formula (3.30) with Sigma a d-dimensional dispersion matrix (d > 1) consistent with a multivariate distribution). This is a more intuitive parameterization of the alpha-beta-delta model used by Blaesild (1981) in earlier literature since it associates all parameters with mixtures of both mean and variance. Since gamma is 0, we have a normal-variance mixture where the mixing variable W has a GIG (generalized inverse gaussian) distribution with parameters lambda, chi, psi. This thickens the tail.

Since gamma equals zero, we have no perturbation of the mean so no ASYMMETRY is introduced and hence the distribution is symmetric.

There is no random number generation associated with the multivariate model in this implementation of the R-language and S-Plus code.

See pp. 77-81 of QRM and appendix A.2.5 for details.

dsmghyp() is frequently called from the function dmghyp().

Value

Vector of length n containing values of density or log-density.

Author(s)

documentation by Scott Ulman for R-language distribution

See Also

dmghyp

Examples

```r
## Not run:
dmghyp <- function(x, lambda, chi, psi, mu, Sigma, gamma, logvalue=FALSE) {
  # Call symmetric form if gamma vector is identically zero:
  if (sum(abs(gamma))==0)
    out <- dsmghyp(x, lambda, chi, psi, mu, Sigma, logvalue=TRUE);
  # lines removed here
}
## End(Not run)
```
edf

Empirical Distribution Function

Description
calculates the empirical distribution function at each element of a vector of observations

Usage

\[
edf(v, \text{adjust}=\text{FALSE})
\]

Arguments

- \(v\) a vector
- \(\text{adjust}\) should the denominator be adjusted to be \((n+1)\)? The default is \text{FALSE}

Value

vector of probabilities

Examples

```r
## Not run:
data(INDEXES.RAW);
INDEXES <- mk.returns(INDEXES.RAW);
PARTIALINDEXES <- cut(INDEXES, "1993-12-31", "2003-12-31");
#Now create a data matrix from the just-created timeSeries
data <- seriesData(PARTIALINDEXES);
#Keep only the data items which are non-zero for both smi and ftse100
data <- data[data[,1]!=0 & data[,2] !=0,];
# Construct pseudo copula data. The 2nd parameter is MARGIN=2
#when applying to columns and 1 applied to rows. Hence this says to
#apply the 'edf()' empirical distribution function() to the columns
#of the data.
Udata <- apply(data,2,edf,adjust=1);
plot(Udata);
## End(Not run)
```

EGIG

Estimate Moments of GIG Distribution

Description
Calculates moments of univariate generalized inverse Gaussian (GIG) distribution
Usage

EGIG(lambda, chi, psi, k=1)

Arguments

- **lambda**: lambda parameter
- **chi**: chi parameter
- **psi**: psi parameter
- **k**: order of moment

Details

Normal variance mixtures are frequently obtained by perturbing the variance component of a normal distribution; we multiply by the square root of a mixing variable assumed to have a GIG (generalized inverse gaussian) distribution depending upon three parameters lambda, chi, and psi. See p.77 in QRM.

Normal mean-variance mixtures are created from normal variance mixtures by applying another perturbation of the same mixing variable to the mean component of a normal distribution. These perturbations create Generalized Hyperbolic Distributions. See pp. 78-81 in QRM. Also see page 497 of QRM Book for a description of the GIG distribution.

Value

Mean of distribution

See Also

- rGIG
- ElogGIG

eigenmeth

Make Matrix Positive Definite

Description

Adjusts a negative definite symmetric matrix to make it positive definite

Usage

eigenmeth(mat, delta=0.001)

Arguments

- **mat**: a symmetric matrix
- **delta**: new size of smallest eigenvalues
ElogGIG

Details

see page 231 of QRM

Value

a positive-definite matrix

See Also

fit.tcopula.rank

ElogGIG

Log Moment of GIG

Description

calculates log moment of generalized hyperbolic distribution

Usage

ElogGIG(lambda, chi, psi)

Arguments

- lambda: lambda parameter
- chi: chi parameter
- psi: psi parameter

Details

see page 497 of QRM

Value

log moment

See Also

rGIG, EGIG
EMupdate EM Update Step for Generalized Hyperbolic Estimation

Description

updates estimates of location (mu), dispersion (Sigma) and skewness (gamma) parameters in EM estimation of multivariate generalized hyperbolic distributions

Usage

EMupdate(data, mix.pars, mu, Sigma, gamma, symmetric, scaling=TRUE, kvalue=1)

Arguments

data data matrix
mix.pars current values of lambda, chi and psi
mu current value of mu
Sigma current value of sigma
gamma current value of gamma
symmetric logical variable for elliptically symmetric case
scaling do we scale determinant of Sigma to be fixed value?
kvalue value of determinant in the case of scaling

Details

See pp 81-83 of QRM; in that case k is the determinant of the sample covariance matrix. ‘EM’ stands for the “Expectation-Maximization” type of algorithm used to fit proposed multivariate hyperbolic models to actual data.

Value

a list with updated estimates of mu (location), Sigma (dispersion) and gamma (skewness)

Author(s)

documentation by Scott Ulman for R-language distribution

See Also

fit.mNH
equicorr

Equicorrelation Matrix

Description

constructs an equicorrelation matrix

Usage

```r
equicorr(d, rho)
```

Arguments

- `d` : dimension of matrix
- `rho` : value of correlation

Value

an equicorrelation matrix

See Also

`rmnorm`, `rmt`

Examples

```r
equicorr(7, 0.5);
# Bivariate Visualization
ll <- c(0.01, 0.99)
BiDensPlot(func=dcopula.gauss, xpts=ll, ypts=ll, P=equicorr(2, 0.5));
BiDensPlot(func=dcopula.t, xpts=ll, ypts=ll, nu=4, P=equicorr(2, 0.5));
```

ESnorm

Expected Shortfall for Normal Distribution

Description

calculates expected shortfall for normal distribution

Usage

```r
ESnorm(p, mean=0, sd=1)
```
Arguments

- `p`: probability level
- `mean`: mean
- `sd`: standard deviation

Details

- see page 45 of QRM

Value

- expected shortfall

See Also

- `ESst`

Examples

```r
ESnorm(c(0.95, 0.99))
```

ESst
Expected Shortfall for Student t Distribution

Description

- calculates expected shortfall for Student t distribution

Usage

```r
ESst(p, df, mu=0, sigma=1, scale=FALSE)
```

Arguments

- `p`: probability level
- `df`: degrees of freedom
- `mu`: mean
- `sigma`: standard deviation
- `scale`: should t distribution be scaled to have variance one?

Details

- see page 45 of QRM

Value

- expected shortfall
See Also

ESnorm

Examples

Set up the quantile probabilities
p <- c(0.90, 0.95, 0.975, 0.99, 0.999, 0.9999, 0.99999, 0.999999);
sigma <- 0.2 * 10000 / sqrt(250);
Now look at Expected Shortfall for student t with 4 degrees of freedom:
ES.t4 <- ESst(p, 4, sigma = sigma, scale = TRUE);
ESst(c(0.95, 0.99), 4);

extremalPP Extremal Point Process

Description

creates an extremal point process of class MPP

Usage

extremalPP(data, threshold = NA, nextremes = NA)

Arguments

data a timeSeries object or vector of numbers to be interpreted as a regular time series
threshold threshold value (either this or "nextremes" must be given but not both)
nextremes the number of upper extremes to be used (either this or "threshold" must be given but not both)

Details

see pages 298-301 of QRM

Value

a list describing class MPP (marked point process) consisting of times and magnitudes of threshold exceedances:
times vector of julian day counts (since 1/1/1960) for each exceedance
marks vector of exceedances values (differences between value and threshold at each mark)
starttime the julian count one day prior to the first date in the entire timeSeries
endtime value of last julian count in entire timeSeries
threshold value of threshold above which exceedances are calculated
See Also

unmark, fit.sePP, fit.seMPP

Examples

data(sp500);
sp500.nreturns <- -mk.returns(sp500);
tD <- timeDate("12/31/1995","%m/%d/%Y");
window <- (seriesPositions(sp500.nreturns) > tD);
sp500.nreturns <- sp500.nreturns[window];
tmp <- extremalPP(sp500.nreturns, ne=100);
tmp$marks[1:5];
tmp$threshold;

findthreshold Find a Threshold

Description

find threshold corresponding to given number of upper order statistics

Usage

findthreshold(data, ne)

Arguments

data data vector
ne vector giving number of extremes above the threshold

Details

when the data are tied a threshold is found so that at least the specified number of extremes lie above

Value

vector of suitable thresholds

See Also

fit.GPD

Examples

data(danish);
Find threshold giving (at least) fifty exceedances for Danish data
findthreshold(danish, 50);
fit.Archcopula2d

Fit 2D Archimedean Copula

Description
fits two-dimensional Archimedean copula by maximum likelihood

Usage

fit.Archcopula2d(data, name)

Arguments

data matrix of copula data with two columns taking values in unit interval

name name of Archimedean copula: "clayton", "gumbel"

Details

see pages 234-236 of QRM

Value

list containing parameter estimate, standard error, value of log-likelihood at maximum and convergence flag

See Also

fit.gausscopula, fit.tcopula

Examples

data(ftse100);
data(smi);
TS1 <- cut(ftse100, "1990-11-08", "2004-03-25");
TS1Augment <- alignDailySeries(TS1, method="before");
TS2Augment <- alignDailySeries(smi, method="before");
INDEXES.RAW <- merge(TS1Augment,TS2Augment);
#Cleanup:
rm(TS1, TS1Augment, TS2Augment);
INDEXES <- mk.returns(INDEXES.RAW);
PARTIALINDEXES <- cut(INDEXES, "1993-12-31", "2003-12-31");
#Now create a data matrix from the just-created timeSeries
data <- seriesData(PARTIALINDEXES);
#Keep only the data items which are non-zero for both smi and ftse100
data <- data[data[,1]!=0 & data[,2] !=0,];
Construct pseudo copula data. The 2nd parameter is MARGIN=2
when applying to columns and 1 applied to rows. Hence this says to
apply the 'edf()' empirical distribution function() to the columns
of the data.
Udata <- apply(data,2,edf,adjust=1);
#Fit 2-dimensional Archimedian copula: choices are gumbel or clayton
#using pseudo data generated via edf() from observed data:
mod.gumbel <- fit.Archcopula2d(Udata,"gumbel");
Not run:
mod.clayton <- fit.Archcopula2d(Udata,"clayton");
End(Not run)

fit.GEV

Fit Generalized Extreme Value Distribution

Description
fits generalized extreme value distribution (GEV) to block maxima data

Usage
fit.GEV(maxima)

Arguments
maxima block maxima data

Details
see pages 271-272 of QRM

Value
list containing parameter estimates, standard errors and details of the fit

See Also
pGEV, pGPD, fit.GPD

Examples
data(nasdaq);
nreturns <- -mk.returns(nasdaq);
monthly.maxima <- aggregateMonthlySeries(nreturns,FUN=max);
monthly.maxima <- seriesData(monthly.maxima)
mod1 <- fit.GEV(monthly.maxima);
fit.GPD

Fit Generalized Pareto Model

Description

fits a generalized Pareto distribution to threshold exceedances

Usage

fit.GPD(data, threshold=NA, nextremes=NA, method="ml", information="observed")

Arguments

data data vector or times series
threshold a threshold value (either this or "nextremes" must be given but not both)
nextremes the number of upper extremes to be used (either this or "threshold" must be given but not both)
method whether parameters should be estimated by the maximum likelihood method "ml" or the probability-weighted moments method "pwm"
information whether standard errors should be calculated with "observed" or "expected" information. This only applies to maximum likelihood method; for "pwm" method "expected" information is used if possible.

Details

see page 278 of QRM; this function uses optim() for ML

Value

a list containing parameter estimates, standard errors and details of the fit

References

See Also

pGPD, fit.GPDb, pGEV, fit.GEV
Examples

data(danish);
plot(danish);
losses <- seriesData(danish);
mod <- fit.GPD(danish,10);
mod$par.est;
modb <- fit.GPD(danish,10,method="pwm");
modb$par.est;

fit.GPDb

Fit Generalized Pareto Model B

Description

fits a generalized Pareto distribution to threshold exceedances using nlminb() rather than nlmin()

Usage

fit.GPDb(data, threshold=NA, nextremes=NA, method="ml", information="observed")

Arguments

data data vector or times series
threshold a threshold value (either this or "nextremes" must be given but not both)
nextremes the number of upper extremes to be used (either this or "threshold" must be given but not both)
method whether parameters should be estimated by the maximum likelihood method "ml" or the probability-weighted moments method "pwm"
information whether standard errors should be calculated with "observed" or "expected" information. This only applies to maximum likelihood method; for "pwm" method "expected" information is used if possible.

Details

see page 278 of QRM; this function uses "nlminb" for ML.

Value

a list containing parameter estimates, standard errors and details of the fit

References

fit.NH

See Also

fit.GPD, fit.GEV, RiskMeasures

Examples

```r
## Not run:
losses <- seriesData(danish);
mod <- fit.GPDb(losses,10);
mod$par.est;
## End(Not run)
```

fit.NH

Fit NIG or Hyperbolic Distribution

Description

fits univariate NIG or hyperbolic distribution

Usage

```r
fit.NH(data, case="NIG", symmetric=FALSE, se=FALSE)
```

Arguments

- `data` vector of data
- `case` whether NIG ("NIG") or hyperbolic ("hyp"); default is NIG
- `symmetric` whether symmetric or asymmetric; default is FALSE
- `se` whether standard errors should be calculated

Details

See pages 78-80 of QRM. Case ‘NIG’ sets lambda to -1/2; case ‘hyp’ sets lambda to 1; no other cases are allowed.

Value

list containing parameter estimates, standard errors and details of fit

Author(s)

documentation by Scott Ulman for R-language distribution

See Also

`fit.st, fit.mNH, fit.mst`
Examples

data(DJ);
Ret.DJ <- mk.returns(DJ);
window1.start <- timeDate("01/01/1993", format="%m/%d/%Y");
window1.end <- timeDate("12/31/2000",format="%m/%d/%Y");
sample1 <- (seriesPositions(Ret.DJ) > window1.start &
seriesPositions(Ret.DJ) < window1.end);
DJ30daily <- Ret.DJ[sample1,];
DJ30daily <- 100*seriesData(DJ30daily);
series <- DJ30daily[, "MSFT"];
mod.NIG <- fit.NH(series);
Not run:
mod.gauss <- fit.norm(series);
mod.t <- fit.st(series);
mod.hyp <- fit.NH(series, case="hyp");
c(mod.gauss$ll.max,mod.t$ll.max,mod.NIG$ll.max,mod.hyp$ll.max);
End(Not run)

fit.POT
Peaks-over-Threshold Model

Description
fits the POT (peaks-over-threshold) model to a point process of class PP or MPP

Usage

fit.POT(PP, markdens = "GPD")

Arguments

PP a point process object of class PP or MPP
markdens (optional) name of density of mark distribution, currently must be "GPD"

Details
	note that if point process is of class PP then function simply estimates
the rate of a homogeneous Poisson process.

Value

a list containing parameters of fitted POT model

par.ests vector of parameter estimates
par.ses vector of parameter std deviations
ll.max loglikelihood maximum

References

see pages 301-305 of QRM

See Also

fit.GPD, extremalPP

Examples

data(sp500);
sp500.nreturns <- -mk.returns(sp500);
window <- (seriesPositions(sp500.nreturns) >
 timeDate("12/31/1995", format="%m/%d/%Y");
sp500.nreturns <- sp500.nreturns[window];
tmp <- extremalPP(sp500.nreturns, ne=100);
mod1 <- fit.POT(tmp);
Not run:
mod1b <- fit.POT(unmark(tmp));
End(Not run)

fit.binomial

Fit Binomial Distribution

Description

fits binomial distribution by maximum likelihood

Usage

fit.binomial(M, m)

Arguments

M
 vector of numbers of successes

m
 vector of numbers of trials

Value

list containing parameter estimates and details of fit

See Also

fit.binomialBeta, fit.binomialLogitnorm, fit.binomialProbitnorm
Examples

```r
## Not run:
spdata.raw;
attach(spdata.raw);
BdefaultRate <- Bdefaults/Bobligors;
mod0 <- fit.binomial(Bdefaults, Bobligors);
## End(Not run)
```

fit.binomialBeta
Fit Beta-Binomial Distribution

Description

fit a beta-binomial distribution by maximum likelihood

Usage

```r
fit.binomialBeta(M, m, startvals=c(2, 2), ses=FALSE)
```

Arguments

- `M`: vector of numbers of successes
- `m`: vector of numbers of trials
- `startvals`: starting values for parameter estimates
- `ses`: whether standard errors should be calculated

Value

list containing parameter estimates and details of fit

Author(s)

documentation by Scott Ulman for R-language distribution

See Also

`fit.binomial`, `fit.binomialLogitnorm`, `fit.binomialProbitnorm`

Examples

```r
## Not run:
data(spdata.raw);
spdata.raw;
#attach data so we don't have to qualify the data column names:
attach(spdata.raw);
BdefaultRate <- Bdefaults/Bobligors;
mod1 <- fit.binomialBeta(Bdefaults, Bobligors);
## End(Not run)
```
fit.binomialLogitnorm

Fit Logitnormal-Binomial Distribution

Description

fits a mixed binomial distribution where success probability has a logitnormal distribution This function has been altered in the R-language edition to contain two extra parameters providing upper and lower limits for the input parameters M and m. if convergence occurs at an endpoint of either limit, you need to reset lower and upper parameter estimators and run the function again

Usage

fit.binomialLogitnorm(M, m, startvals=c(-1, 0.5),
lowerParamLimits = c(-5.0, 0.02), upperParamLimits = c(1,0.9))

Arguments

M
vector of numbers of successes (e.g. number of defaults in a credit-rating class)
m
vector of numbers of trials (e.g. number of obligors in a credit-rating class)
startvals starting values for parameter estimates
lowerParamLimits vector with lower limits for each parameter to be used by optimization algorithm
upperParamLimits vector with upper limits for each parameter to be used by optimization algorithm

Details

This function calls the R-language method optim(...method="L-BFGS-B") which uses input parameter vectors of upper and lower limits. Hence if convergence occurs at an endpoint of either limit, you may need to expand the corresponding upper or lower limit and run the function again.

Value

list containing parameter estimates and details of fit:

par.ests vector of optimum parameter estimators
maxloglik value of likelihood function at optimum
converged T or F indicating convergence
details any messages associated with convergence algorithm
pi probability of a single default (see p. 345 in QRM)
pi2 probability of two joint defaults (see p. 345 in QRM)
rhoY default correlation (see p. 345 in QRM)
fit.binomialProbitnorm

Author(s)
documentation by Scott Ulman for R-language distribution

See Also
fit.binomial, fit.binomialBeta, fit.binomialProbitnorm

Examples

```r
## Not run:
spdata.raw;
attach(spdata.raw);
BdefaultRate <- Bdefaults/Bobligors;
# A little patience is required for the next model ...
mod3 <- fit.binomialLogitnorm(Bdefaults, Bobligors);
## End(Not run)
```

Description
Fit Probitnormal-Binomial Distribution

Fits a mixed binomial distribution where success probability has a probitnormal distribution. This function has been altered in the R-language edition to contain two extra parameters providing upper and lower limits for the input parameters M and m. If convergence occurs at an endpoint of either limit, you need to reset lower and upper parameter estimators and run the function again.

Usage

```r
fit.binomialProbitnorm(M, m, startvals=c(-1, 0.5),
lowerParamLimits = c(-3.0, 0.02), upperParamLimits = c(1,0.9))
```

Arguments

- `M` vector of numbers of successes (e.g. number of defaults in a credit-rating class)
- `m` vector of numbers of trials (e.g. number of obligors in a credit-rating class)
- `startvals` starting values for parameter estimates
- `lowerParamLimits` vector with lower limits for each parameter to be used by optimization algorithm
- `upperParamLimits` vector with upper limits for each parameter to be used by optimization algorithm

Details

This function calls the R-language method optim(...method="L-BFGS-B") which uses input parameter vectors of upper and lower limits. Hence if convergence occurs at an endpoint of either limit, you may need to expand the corresponding upper or lower limit and run the function again.
Value

list containing parameter estimates and details of fit

- par.est: vector of parameter estimators
- maxloglik: value of likelihood function at optimum
- converged: T or F indicating convergence
- details: any messages associated with convergence algorithm
- pi: probability of a single default (see p. 345 in QRM)
- pi2: probability of two joint defaults (see p. 345 in QRM)
- rhoY: default correlation (see p. 345 in QRM)

Author(s)

documentation by Scott Ulman for R-language distribution

See Also

- fit.binomial
- fit.binomialBeta
- fit.binomialLogitnorm

Examples

```r
## Not run:
spdata.raw;
attach(spdata.raw);
BdefaultRate <- Bdefaults/Bobligors;
mod2 <- fit.binomialProbitnorm(Bdefaults, Bobligors);
## End(Not run)
```

fit.gausscopula

Fit Gauss Copula

Description

fits Gauss copula to pseudo-copula data

Usage

```r
fit.gausscopula(Udata)
```

Arguments

- **Udata**: matrix of pseudo-copula data where rows are vector observations with all values in unit interval

Details

see pages 234-235 of QRM
Value

list containing parameter estimates and details of fit

See Also

fit.tcopula, fit.Archcopula2d

Examples

data(ftse100);
data(smi);
TS1 <- cut(ftse100, "1990-11-08", "2004-03-25");
TS1Augment <- alignDailySeries(TS1, method="before");
TS2Augment <- alignDailySeries(smi, method="before");
INDEXES_RAW <- merge(TS1Augment, TS2Augment);
#Cleanup:
rm(TS1, TS1Augment, TS2Augment);
INDEXES <- mk.returns(INDEXES_RAW);
PARTIALINDEXES <- cut(INDEXES, "1993-12-31", "2003-12-31");
#Now create a data matrix from the just-created timeSeries
data <- seriesData(PARTIALINDEXES);
#Keep only the data items which are non-zero for both smi and ftse100
data <- data[data[,1]!=0 & data[,2] !=0,];
Construct pseudo copula data. The 2nd parameter is MARGIN=2
when applying to columns and 1 applied to rows. Hence this says to
apply the 'edf()' empirical distribution function() to the columns
of the data.
Udata <- apply(data,2,edf,adjust=1); mod.gauss <- fit.gausscopula(Udata);
mod.gauss;

fit.mNH

Fit Multivariate NIG or Hyperbolic Distribution

Description

fits multivariate NIG or hyperbolic distribution using variant of EM algorithm

Usage

fit.mNH(data=data.hyp.5d, symmetric=FALSE, case="NIG",
 kvalue=NA, nit=2000, tol=1e-10)

Arguments

data matrix of data where rows are vector observations
symmetric whether symmetric case should be fitted; default is FALSE
case whether NIG ("NIG") or hyperbolic ("hyp") should be fitted
fit.mNH

- **kvalue**: value to which to constrain determinant of dispersion matrix
- **nit**: maximum number of iterations
- **tol**: tolerance for convergence

Details

see pages 81-83 in QRM

Value

list containing parameter estimates, standard errors and details of fit

Author(s)

documentation by Scott Ulman for R-language distribution

See Also

fit.mst, fit.NH, EMupdate, MCECupdate, MCEM.Qfunc

Examples

data(DJ);
Ret.DJ <- mk.returns(DJ);
window1.start <- timeDate("01/01/1993",format="%m/%d/%Y");
window1.end <- timeDate("12/31/2000", format="%m/%d/%Y");
sample1 <- (seriesPositions(Ret.DJ) > window1.start &
seriesPositions(Ret.DJ) < window1.end);
selection1 <- c("AXP","EK","BA","C","KO","MSFT",
"HWP","INTC","JPM","DIS");
DJ30daily <- Ret.DJ[sample1,selection1];
DJ30weekly <- aggregateWeeklySeries(DJ30daily, FUNC= colSums);
mod.NIG <- fit.mNH(DJ30weekly,symmetric=FALSE,case="NIG");
Not run:
mod.GAUSS <- fit.norm(DJ30weekly);
mod.HYP <- fit.mNH(DJ30weekly,symmetric=FALSE,case="hyp");
mod.t <- fit.mst(DJ30weekly);
mod.NIGs <- fit.mNH(DJ30weekly,symmetric=TRUE,case="NIG");
mod.HYPs <- fit.mNH(DJ30weekly,symmetric=TRUE,case="hyp");
round(c(mod.GAUSS$ll.max,mod.t$ll.max,mod.NIG$ll.max,
 mod.HYPs$ll.max,mod.NIGs$ll.max,mod.HYP$ll.max),1);
End(Not run)
Description

fits multivariate Student’s t distribution using variant of EM algorithm

Usage

```r
fit.mst(data=data.t.5d, nit=2000, tol=1e-10)
```

Arguments

- **data**: matrix of data where rows are vector observations
- **nit**: number of iterations of EM-type algorithm
- **tol**: tolerance of improvement for stopping iteration

Details

see page 75 of QRM

Value

list containing parameter estimates, standard errors and details of fit

Author(s)

documentation by Scott Ulman for R-language distribution

See Also

`fit.mNH`, `fit.NH`, `fit.st`

Examples

```r
data(DJ);
Ret.DJ <- mk.returns(DJ);
window1.start <- timeDate("01/01/1993", format="%m/%d/%Y");
window1.end <- timeDate("12/31/2000", format="%m/%d/%Y");
sample1 <- (seriesPositions(Ret.DJ) > window1.start & seriesPositions(Ret.DJ) < window1.end);
selection1 <- c("AXP","EK","BA","C","KO","MSFT","HWP","INTC","JPM","DIS");
DJ30daily <- Ret.DJ[sample1,selection1];
DJ30weekly <- aggregateWeeklySeries(DJ30daily, FUNC= colSums);
mod.t <- fit.mst(DJ30weekly);
## Not run:
mod.GAUSS <- fit.norm(DJ30weekly);
mod.NIG <- fit.mNH(DJ30weekly, symmetric=FALSE, case="NIG");
```
mod.HYP <- fit.mNH(DJ30weekly, symmetric=FALSE, case="hyp");
mod.NIGs <- fit.mNH(DJ30weekly, symmetric=TRUE, case="NIG");
mod.HYPs <- fit.mNH(DJ30weekly, symmetric=TRUE, case="hyp");
round(c(mod.GAUSS$ll.max, mod.t$ll.max, mod.NIGs$ll.max,
 mod.HYPs$ll.max, mod.NIG$ll.max, mod.HYP$ll.max),1);
End(Not run)

fit.norm

Fit Multivariate Normal

Description

fits multivariate (or univariate) normal by maximum likelihood

Usage

```r
fit.norm(data)
```

Arguments

- **data**

 matrix of data where each row is a vector observation

Value

list containing MLEs and value of likelihood at maximum

See Also

dmnorm

Examples

```r
data <- rmnorm(1000, rho=0.7, d=3);
fit.norm(data);
```

fit.seMPP

Fit Marked Self-Exciting Point Process

Description

fits marked self-exciting process to a point process object of class MPP

Usage

```r
fit.seMPP(PP, markdens = "GPD", model = "Hawkes", mark.influence = TRUE,
predictable = FALSE, std.errs = FALSE)
```
Arguments

PP a point process object of class MPP
markdens name of density of mark distribution; currently must be "GPD"
model name of self-exciting model: Hawkes or ETAS
mark.influence whether marks of marked point process may influence the self-excitement
predictable whether previous events may influence the scaling of mark distribution
std.errs whether standard errors should be computed VALUE

Details

see pages 307-309 of QRM

Value

a fitted self-exciting process object of class sePP

See Also

fit.seMPP, plot.sePP, stationary.sePP

Examples

data(sp500);
sp500.nreturns <- -mk.returns(sp500);
window <- (seriesPositions(sp500.nreturns) >
 timeDate("12/31/1995",format = "%m/%d/%Y");
sp500.nreturns <- sp500.nreturns[window];
tmp <- extremalPP(sp500.nreturns,ne=100);
mod3a <- fit.seMPP(tmp,mark.influence=FALSE,std.errs=TRUE);
Not run:

mod3b <- fit.seMPP(tmp,mark.influence=TRUE,std.errs=TRUE);
mod3c <- fit.seMPP(tmp,model="ETAS",mark.influence=FALSE,std.errs=TRUE);
mod3d <- fit.seMPP(tmp,model="ETAS",mark.influence=TRUE,std.errs=TRUE);
mod4a <- fit.seMPP(tmp,mark.influence=FALSE,predictable=TRUE,
 std.errs=TRUE);
mod4b <- fit.seMPP(tmp,mark.influence=TRUE,predictable=TRUE,
 std.errs=TRUE);
mod4c <- fit.seMPP(tmp,model="ETAS",mark.influence=FALSE,
 predictable=TRUE,std.errs=TRUE);
mod4d <- fit.seMPP(tmp,model="ETAS",mark.influence=TRUE,
 predictable=TRUE,std.errs=TRUE);
End(Not run)
fit.sePP

Fit Self-Exciting Process

Description

fits fits self-exciting process to a point process object of class PP (unmarked) or MPP (marked)

Usage

```r
fit.sePP(PP, model = "Hawkes", mark.influence = TRUE, std.errs = FALSE)
```

Arguments

- **PP**: a point process object of class PP (unmarked) or MPP (marked)
- **model**: (optional) name of self-exciting model: Hawkes or ETAS
- **mark.influence**: (optional) whether marks of marked point process may influence the self-excitement
- **std.errs**: (optional) whether standard errors should be computed

Details

see pages 306-307 of QRM

Value

a fitted self-exciting process object of class sePP

See Also

- `fit.seMPP`, `plot.sePP`, `stationary.sePP`

Examples

```r
data(sp500);
sp500.nreturns <- -mk.returns(sp500);
window <- (seriesPositions(sp500.nreturns) >
  timeDate("12/31/1995", format="%m/%d/%Y");
sp500.nreturns <- sp500.nreturns[window];
tmp <- extremalPP(sp500.nreturns,ne=100);
mod2a <- fit.sePP(tmp,mark.influence=FALSE,std.errs=TRUE);
## Not run:
mod2b <- fit.sePP(tmp,mark.influence=TRUE,std.errs=TRUE);
mod2c <- fit.sePP(tmp,model="ETAS",mark.influence=FALSE,std.errs=TRUE);
mod2d <- fit.sePP(tmp,model="ETAS",mark.influence=TRUE,std.errs=TRUE);
## End(Not run)
```
Description

fits univariate Student’s t distribution

Usage

`fit.st(data)`

Arguments

- `data` vector of data

Details

see page 75 of QRM

Value

list containing parameter estimates, standard errors and details of fit

See Also

`fit.NH, fit.mNH, fit.mst`

Examples

data(DJ);
Ret.DJ <- mk.test(DJ);
window1.start <- timeDate("01/01/1993",format="%m/%d/%Y");
window1.end <- timeDate("12/31/2000",format="%m/%d/%Y");
sample1 <- (seriesPositions(Ret.DJ) > window1.start
 & seriesPositions(Ret.DJ) < window1.end);
DJ30daily <- Ret.DJ[sample1,];
DJ30daily <- 100*seriesData(DJ30daily);
rseries <- DJ30daily[,"MSFT"];
mod.t <- fit.st(rseries);
Not run:
mod.gauss <- fit.norm(rseries);
c(mod.gauss$ll.max, mod.t$ll.max);
mod.NIG <- fit.NH(rseries);
mod.hyp <- fit.NH(rseries,case="hyp");
c(mod.NIG$ll.max, mod.hyp$ll.max);
End(Not run)
Fit t Copula

Description
fit t copula to pseudo-copula data

Usage
fit.tcopula(Udata)

Arguments
Udata matrix of pseudo-copula data where rows are vector observations with all values in unit interval

Details
see pages 235-236 of QRM

Value
list containing parameter estimates and details of fit

See Also
fit.gausscopula, fit.Archcopula2d

Examples
data(ftse100); data(smi); TS1 <- cut(ftse100, "1990-11-08", "2004-03-25"); TS1Augment <- alignDailySeries(TS1, method="before"); TS2Augment <- alignDailySeries(smi, method="before"); INDEXES. RAW <- merge(TS1Augment,TS2Augment); #Cleanup: rm(TS1, TS1Augment, TS2Augment); INDEXES <- mk.returns(INDEXES. RAW); PARTIALINDEXES <- cut(INDEXES, "1993-12-31", "2003-12-31"); #Now create a data matrix from the just-created timeSeries data <- seriesData(PARTIALINDEXES); #Keep only the data items which are non-zero for both smi and ftse100 data <- data[data[,1] != 0 & data[,2] != 0,]; # Construct pseudo copula data. The 2nd parameter is MARGIN=2 #when applying to columns and 1 applied to rows. Hence this says to #apply the 'edf()' empirical distribution function() to the columns #of the data. Udata <- apply(data, 2, edf, adjust=1);
#Fit a t-copula to the data:
mod.t <- fit.tcopula(Udata);
mod.t;

fit.tcopula.rank
Fit t Copula Using Rank Correlations

Description

fits t copula to pseudo-copula data

Usage

fit.tcopula.rank(Udata, method="Kendall")

Arguments

- **Udata**: matrix of pseudo-copula data where rows are vector observations with all values in unit interval
- **method**: method to use for calculating rank correlations; default is "Kendall", which is theoretically justified

Details

see pages 229-231 of QRM

Value

list containing parameter estimates and details of fit

See Also

fit.tcopula, fit.gausscopula, fit.Archcopula2d

Examples

```r
## Not run:
# Multivariate Fitting with Gauss and t: Simulation
# Create an equicorrelation matrix:
P <- equicorr(3,0.6);
set.seed(113);
#Generate a new set of random data from a t-copula (10df) with the same Sigma matrix:
Udatasim2 <- rcopula.t(1000,df=10,Sigma=P);
#Now fit the copula to the simulated data using (Kendall) rank correlations
#and the fit.tcopula.rank() method:
mod.t2 <- fit.tcopula.rank(Udatasim2);
mod.t2;
## End(Not run)
```
ftse100 FTSE 100 Stock Market Index

Description

closing values of FTSE 100 from 1990 to March 2004

ghyp Univariante Generalized Hyperbolic Distribution

Description

Density and random number generation for univariate generalized hyperbolic distribution in new
QRM (Chi-Psi-Gamma) parameterization. (The dispersion matrix Sigma is identically 1, i.e. a
scalar 1.) See pp. 77-81 in QRM.

Usage

dghyp(x, lambda, chi, psi, mu=0, gamma=0, logvalue=FALSE)
rghyp(n, lambda, chi, psi, mu=0, gamma=0)

Arguments

x vector of values at which to evaluate density
n sample size
lambda scalar mixing parameter
chi scalar mixing parameter
psi scalar mixing parameter
mu location parameter
gamma skewness parameter
logvalue should log density be returned; default is FALSE

Details

See page 78 in QRM for joint density formula (3.30) with Sigma (dispersion matrix) the identity
and d=1 (meaning a univariate distribution) applies.

The univariate QRM parameterization is defined in terms of parameters chi-psi-gamma instead of
the alpha-beta-delta model used by Blaesild (1981) in earlier literature. If gamma is 0, we have
a normal variance mixture where the mixing variable W has a GIG generalized inverse gaussian)
distribution with parameters lambda, chi, psi. This thickens the tail.

If gamma exceeds zero, we have a normal mean-variance mixture where the mean is also perturbed
to equal mu + (W * gamma) which introduces ASYMMETRY as well.

Values for lambda and mu are identical in both QRM and B parameterizations. Sigma does not
appear in the parameter list since in the univariate case its value is identically 1.
Value

values of density or log-density (dghyp) or random sample (rghyp)

Note

Density values from dghyp() should be identical to those from dghypB() if the alpha-beta-delta parameters of the B type are translated to the corresponding gamma-chi-psi parameters of the QRM type by formulas on pp 79-80.

Author(s)

documentation by Scott Ulman for R-language distribution

See Also

dghypB, besselM3, dmghyp

Examples

```r
data(DJ);
#Make returns from timeSeries (the default is log-returns).
#Ret.DJ is a timeSeries class.
Ret.DJ <- mk.returns(DJ);
#In R, cut() method works by selecting data only between the
#'to' and 'from' dates. Hence we will use the remaining (cut) data from
#1993-01-01 to 2000-12-31. MUST use PRIOR DAY on 'from'
DJ30dailyTS <- cut(Ret.DJ, from="1992-12-31", to="2000-12-31");
DJ30daily <- 100 * seriesData(DJ30dailyTS);
#Extract only the Microsoft returns as 'rseries'; remember this is a vector--not a timeSeries
rseries <- DJ30daily[,"MSFT"];
#The default case for fit.NH() is NIG requiring lambda = -1/2.
mod.NIG <- fit.NH(rseries);
xvals <- seq(from=min(rseries),to=max(rseries),length=100);
yvals.NIG <- dghyp(xvals,lambda=-1/2,chi=mod.NIG$par.ests[1],
psi=mod.NIG$par.ests[2],mu=mod.NIG$par.ests[3],gamma=mod.NIG$par.ests[4]);
```

ghypB

Univariate Generalized Hyperbolic Distribution B

Description

Density and random number generation for univariate generalized hyperbolic distribution in standard parameterization (alpha-beta-delta). (The dispersion matrix Sigma is identically 1, i.e. a scalar 1.) See pp. 77-81 in QRM.

Usage

```r
dghypB(x, lambda, delta, alpha, beta=0, mu=0, logvalue=FALSE)
rghypB(n, lambda, delta, alpha, beta=0, mu=0)
```
Arguments

- x: values at which to evaluate density
- n: sample size
- lambda: scalar parameter
- delta: scalar parameter
- alpha: scalar parameter
- beta: skewness parameter
- mu: location parameter
- logvalue: Should log density be returned? Default is FALSE

Details

See page 78 in QRM for joint density formula (3.30) with Sigma (dispersion matrix) the identity and d=1 (meaning a univariate distribution) applies.

The B parameterization corresponds to the original alpha-beta-delta model used by Blaesild (1981) in earlier literature. If gamma is 0, we have a normal variance mixture defined by the parameters alpha-beta-delta. This thickens the tail.

If gamma exceeds zero, we have a normal mean-variance mixture where the mean is also perturbed to equal mu + (W * gamma) which introduces ASYMMETRY as well.

Values for lambda and mu are identical in both QRM and B parameterizations.

Sigma does not appear in parameter list since in the univariate case its value is assumed to be identically 1.

Value

values of density or log-density (dghypB) or random sample (rghypB)

Note

Density values from dgyhp() should be identical to those from dghypB() if the alpha-beta-delta parameters of the B type are translated to the corresponding gamma-chi-psi parameters of the QRM type by formulas on pp 79-80.

Author(s)

documentation by Scott Ulman for R-language distribution

See Also

dghyp, besselM3
hessb
Approximate Hessian Matrix

Description

calculates a numerical approximation of Hessian matrix

Usage

```r
hessb(f, x, ep=0.0001, ...)
```

Arguments

- `f` function
- `x` value of function at which to approximate Hessian
- `ep` precision for numerical differencing
- `...` other arguments of function `f`

Value

matrix of approximate second derivatives

Examples

```r
## Not run:
#within fit.NH we approximate 2nd derivatives to calc standard errors
if(se)
{
  hessmatrix <- hessb(negloglik,par.est)
  vcmatrix <- solve(hessmatrix)
  par.ses <- sqrt(diag(vcmatrix))
  names(par.ses) <- names(par.est)
  dimnames(vcmatrix) <- list(names(par.est), names(par.est))
}
else
{
  par.ses <- NA
  vcmatrix <- NA
}
## End(Not run)
```
hillPlot

Create Hill Plot

Description

Plot the Hill estimate of the tail index of heavy-tailed data, or of an associated quantile estimate.

Usage

```r
hillPlot(data, option = c("alpha", "xi", "quantile"), start = 15,
end = NA, reverse = FALSE,
p = NA, ci = 0.95, auto.scale = TRUE, labels = TRUE, ...)
```

Arguments

- `data`: data vector
- `option`: whether "alpha", "xi" (1/alpha) or "quantile" (a quantile estimate) should be plotted
- `start`: lowest number of order statistics at which to plot a point
- `end`: highest number of order statistics at which to plot a point
- `reverse`: whether plot is to be by increasing threshold (TRUE) or increasing number of order statistics (FALSE)
- `p`: probability required when option "quantile" is chosen
- `ci`: probability for asymptotic confidence band; for no confidence band set ci to zero
- `auto.scale`: whether or not plot should be automatically scaled; if not, xlim and ylim graphical parameters may be entered
- `labels`: whether or not axes should be labelled
- `...`: other graphics parameters

Details

This plot is usually calculated from the alpha perspective. For a generalized Pareto analysis of heavy-tailed data using the gpd function, it helps to plot the Hill estimates for xi. See pp. 286-289 in QRM. Especially note that Example 7.28 suggests the best estimates occur when the threshold is very small, perhaps 0.1 statistics in a sample of size 1000. Hence you should NOT be using a 95 estimates.

Value

None

Author(s)

documentation by Scott Ulman for R-language distribution
See Also

\texttt{xiplot}, \texttt{plotTail}

Examples

```r
## Not run:
data(danish);
#Run hillPlot to show what happens with the Hill Plot.
#See Example 7.27, p. 287 in QRM
hillPlot(danish, option = "alpha", start = 5, end = 250, p = 0.99);
hillPlot(danish, option = "alpha", start = 5, end = 60, p = 0.99);
## End(Not run)
```

hsi

\textit{Hang Seng Stock Market Index}

Description

This timeSeries data set provides the daily closing values of the Hang Seng Index from 1994 to March 2004

jointnormalTest

\textit{Test of Multivariate Normality}

Description

provides test of multivariate normality based on analysing Mahalanobis distances

Usage

```
jointnormalTest(data, dist="chisquare")
```

Arguments

- **data**: matrix of data with each row representing an observation
- **dist**: "chisquare" performs test against chi-squared distribution, which is an approximation; "beta" performs test against a scaled beta

Details

see pages 69-70 of QRM

Value

p-value for Kolmogorov-Smirnov test
Side Effects

a QQplot against the reference distribution is created

See Also

MardiaTest

Examples

data(DJ);
Ret.DJ <- mk.returns(DJ);
selection1 <- c("AXP","EK","BA","C","KO","MSFT",
"HWP","INTC","JPM","DIS");
partialDJ30dailyTS <- Ret.DJ[,selection1];
#Choose only the data from 1/1/1993 to 12/31/2000. Note
#'from' date must be day prior to desired start date.
partialDJ30daily <- cut(partialDJ30dailyTS,from="1992-12-31",
to="2000-12-31");
partialDJ30dailyMatrix <- seriesData(partialDJ30daily);
#Note the tests on the ten stocks selected from DJ30 fail the test miserably
#except possibly the quarterly values. The QQ plots are very revealing.
#See p. 72 in QRM Book.
jointnormalTest(partialDJ30dailyMatrix);

kurtosisSPlus
S-Plus Version of Kurtosis which differs from the R-versions

Description

The values calculated by R and S-Plus differ when we use the call kurtosis(x, method="moment")
which causes serious consequences in the fit.NH() function call. Hence we introduce the S-Plus
version here. S-Plus has only the "moment" and "fisher" methods. R has a 3rd type, the "excess"
which should parallel the R "moment" type but fails.

Usage

kurtosisSPlus(x, na.rm = FALSE, method = "fisher")

Arguments

x
data vector

na.rm
TRUE or FALSE indicating whether to remove any NA values from the data
vector

method
either the 'moment' or 'fisher' method

Details

use R-code which reflects the way S-Plus calculates Kurtosis so we match up the answer regardless
of whether using S-Plus or R
Value

a single number reflecting the kurtosis statistic as calculated via the S-Plus method (either "moment" or "fisher")

Author(s)

documentation by Scott Ulman for R-language distribution

lbeta

Log Beta Function

Description

calculates logarithm of beta function

Usage

```
lbeta(a, b)
```

Arguments

- **a**: vector of values of argument 1
- **b**: vector of values of argument 2

Value

vector of values of logarithm of beta function

See Also

For other special functions, see Special

mghyp

Multivariate Generalized Hyperbolic Distribution

Description

Density and random number generation for density of multivariate generalized hyperbolic distribution in new QRM (Chi-Psi-Sigma- Gamma) parameterization. Note Sigma is the dispersion matrix. See pp. 77-81.

Usage

```
dmghyp(x, lambda, chi, psi, mu, Sigma, gamma, logvalue=FALSE)
rmghyp(n, lambda, chi, psi, Sigma=equicorr(d, rho), mu=rep(0, d),
       gamma=rep(0, d), d=2, rho=0.7)
```
Arguments

- **x**: matrix with n rows and d columns; density is evaluated at each vector of row values.
- **lambda**: scalar parameter.
- **chi**: scalar parameter.
- **psi**: scalar parameter.
- **mu**: location vector.
- **Sigma**: dispersion matrix.
- **d**: dimension of distribution.
- **rho**: correlation value to build equicorrelation matrix.
- **gamma**: vector of skew parameters.
- **logvalue**: should log density be returned; default is FALSE.
- **n**: length of vector.

Details

See page 78 in QRM for joint density formula (3.30) with Sigma a d-dimensional dispersion matrix (d > 1) consistent with a multivariate distribution. This is a more intuitive parameterization of the alpha-beta-delta model used by Blaesild (1981) in earlier literature since it associates all parameters with mixtures of both mean and variance. Here gamma is assumed equal to 0 so we have a normal variance mixture where the mixing variable W has a GIG (generalized inverse gaussian) distribution with parameters lambda, chi, psi. This thickens the tail.

If gamma exceeds zero, we have a normal mean-variance mixture where the mean is also perturbed to equal mu + (W * gamma) which introduces ASYMMETRY as well.

The default d=2 for the random generator gives a two-dimensional matrix of n values.

See pp. 77-81 of QRM and appendix A.2.5 for details.

Value

values of density or log-density or randomly generated values

Note

See page 78 in QRM; if gamma is a zero vector distribution is elliptical and dsmghyp is called. If lambda = (d+1)/2, we drop generalized and call the density a d-dimensional hyperbolic density. If lambda = 1, the univariate marginals are one-dimensional hyperbolics. If lambda = -1/2, distribution is NIG (normal inverse gaussian). If lambda greater than 0 and chi = 0, we get the VG (variance gamma) If we can define a constant nu such that lambda = (-1/2)*nu AND chi = nu then we have a multivariate skewed-t distribution. See p. 80 of QRM for details.

Author(s)

documentation by Scott Ulman for R-language distribution
mk.its.exceedances.tS

Extract Exceedances over a Threshold into Irregular Time Series for Plotting when Input is TimeSeries

Description

Builds an irregular time series object of the ‘its’ class to hold the exceedances above a specified threshold ordered according to date. The ‘its’ time series may then be plotted easily to show clustering effects (“volatility clustering”)

Usage

```r
mk.its.exceedances.tS(timeseries, col = 1, thresholdValue)
```

Arguments

- `timeseries` fCalendar timeSeries object containing data set for which you wish to plot exceedances over a threshold
- `col` the column number of the timeSeries data from which you wish to extract the exceedances
thresholdValue

the minimum data value above which you want to collect exceedances into the irregular time series (‘its’ object); calculate by calling QRM function findthreshold()

Details

This function passes a timeSeries object containing both the Data and positions slots for associating dates with Data when building the irregular time series.

See mk.its.exceedances.vector() for a method which passes a separate vector of data and a matching-length position slot from a different timeSeries object.

Value

An irregular time series (‘its’ object requiring the ‘its’ package to be loaded) with exceedances ordered according to date. Input ‘its’ into a plot() function to graph the exceedances.

Author(s)

documentation by Scott Ulman for R-language distribution

References

see pages 117-8 of QRM. Chapter 4 discusses the usefulness of graphing exceedances to display “volatility clustering”.

See Also

timeSeriesClass, mk.its.exceedances.vector, mk.returns

Examples

data(sp500);
#Select data from the SP500 INDEX time series between
#01/01/1998 and 12/31/2003
index <- cut(sp500,"1998-01-01", "2003-12-31");
#Create a return time series using log differences.
rseries <- mk.returns(index);
kval <- 50;
#set threshold so we have 50 observations above threshold
#Find the threshold associated with the top 50 observations:
upper <- findthreshold(rseries@Data ,kval)
#Create an 'its' (irregular time series) associated with the
#observations above the threshold 'upper'.
itsSample <- mk.its.exceedances.tS(rseries,1,upper);
#Plot the irregular time series of exceedances
plot(itsSample,type="h", main="Clustering Evidence-S&P500
Index:1998-2003",ylab="Large Returns");
Not run:

#3rd stock in series of DJ 30 stocks from timeSeries DJ containing
all 30 stocks (not an index)
newSeries <- mk.returns(DJ);
u3 <- findthreshold(newSeries@Data[,3], kval);
use 3rd column in Data slot
itsSample2 <- mk.its.exceedances.tS(newSeries, 3, u3);
pass 3 for third column in Data slot
plot(itsSample2, type="h", main="Clustering Evidence-DJ[,3]",
 ylab="Large Returns");
End(Not run)

mk.its.exceedances.vector

Extract Exceedances over Threshold into Irregular Time Series for Plotting when Input is Vector

Description

Builds an irregular time series object of the `its` class to hold the exceedances above a specified threshold ordered according to date. The `its` time series may then be plotted easily to show clustering effects ("volatility clustering").

Usage

```
mk.its.exceedances.vector(datavector, paralleltimeseriesPos, thresholdValue)
```

Arguments

- `datavector` a data vector for which you wish to plot exceedances over a threshold
- `paralleltimeseriesPos` a vector of length equal to the datavector containing the positions (time-date) attribute from an R-Metrics type timeSeries object
- `thresholdValue` the minimum data value above which you want to collect exceedances into the irregular time series ("its" object); calculate by calling QRM function `findthreshold()`

Details

This function passes a vector (not a matrix or timeSeries) containing the data. It passes a separate positions slot from a timeSeries for associating dates with Data when building the irregular time series.

See `mk.its.exceedances.tS()` for a method which passes a timeSeries object containing both data and position.

Value

An irregular time series ‘its’ object requiring the ‘its’ package to be loaded with exceedances ordered according to date. Input ‘its’ into plot function to graph the exceedances
mk.oldts

Author(s)

documentation by Scott Ulman for R-language distribution

References

See pages 117-8 of QRM. Chapter 4 discusses the usefulness of graphing exceedances to display “volatility clustering”.

See Also

`timeSeriesClass, mk.its.exceedances.tS, mk.returns`

Examples

```
## Not run:
# In this example, a simulated data series tdata was generated using parameters derived from fitting a timeSeries
# for the SP500 index called rseries over a specified period.
# tdata was randomly generated from the t-distribution using parameters estimated from the actual SP500 time series of data
# returns (log differences). Thus tdata is a VECTOR (one column)
# rather than a timeSeries or matrix. If you have a matrix, pass
# only the single column you want to analyze.
# set threshold so we have 50 observations above threshold from tdata.
kval <- 50;
upper <- findthreshold(tdata,kval);
# Create an its (irregular time series) associated with observations above threshold upper. We pass the simulated data vector tdata,
# the dates (positions slot) from a separate timeseries over the same period for which we are considering the simulated data,
# and the threshold value for our data vector.
itsSample <- mk.its.exceedances.vector(tdata,rseries@positions,upper);
# Plot the irregular time series of exceedances
plot(itsSample,type="h", main="Clustering Evidence-Simulated t data",
     ylab="Large Returns");
## End(Not run)
```

mk.oldts
Make Old Style Time Series

Description

This function converts a 'timeSeries' object (from package fCalendar in R) to an 'its' object (an irregular times series from package 'its' in R). The conversion is useful when plotting irregular (not-evenly spaced in time) series.

Usage

```
mk.oldts(timeseries)
```
mk.returns

Make Financial Return Data

Arguments

- `timeseries` a timeSeries object

Details

this is occasionally useful for plotting

Value

an old-style 'its' object

Description

makes financial return data from asset price data

Usage

```r
mk.returns(tsdata, type="log")
```

Arguments

- `tsdata` a timeSeries object containing prices
- `type` whether "log" or "relative" returns should be constructed

Value

a timeSeries object containing returns

See Also

`timeSeriesClass`, `TimeSeriesClassRMetrics`

Examples

```r
data(ftse100);
ftse100.r <- mk.returns(ftse100);
```
momest

Moment Estimator of Default Probabilities

Description

calculates moment estimator of default probabilities and joint default probabilities for a homoge-
neous group

Usage

momest(data, trials, limit=10.)

Arguments

data vector of numbers of defaults in each time period
trials vector of group sizes in each time period
limit maximum order of joint default probability to estimate

Details

first returned value is default probability estimate; second value is estimate of joint default proba-
bility for two firms; and so on. See pages 375-376 in QRM

Value

vector of default probability and joint default probability estimates

Author(s)

documentation by Scott Ulman for R-language distribution

See Also

fit.binomialBeta, fit.binomialLogitnorm, fit.binomialProbitnorm

Examples

Not run:
#MODEL RISK See especially Section 8.4.6 on p. 364 of QRM book
spdata.raw;
attach(spdata.raw);
#momest() is an internal function in functionsCredit.R to
#calculate moment estimators for default probabilities. The first
#parameter input is a vector containing the number of defaults in
#each time period; the 2nd parameter input is a vector containing the
#number of credits in the group during the time period.
momest(Bdefaults,Bobligors);
#The values calculated from momest(Bdefaults,Bobligors) are the
parameter estimates shown in Table 8.6, p.365 of QRM book under the model column labeled 'B'
The first value returned is the probability of a single default.
pi.B <- momest(Bdefaults, Bobligors)[1]; # one obligor defaulting pi = .04896
second value returned is probability of joint default probability for two firms.
pi2.B <- momest(Bdefaults, Bobligors)[2]; # two obligors defaulting jointly pi2 = .0031265
End(Not run)

nasdaq
NASDAQ Stock Market Index

Description

This timeSeries data set provides the daily closing values of the NASDAQ index from 1994 to March 2004

nikkei
Nikkei Stock Market Index

Description

This timeSeries data set provides the daily closing values of the Nikkei index from 1994 to March 2004

plot.MPP
Plot Marked Point Process

Description

creates a picture of a marked point process

Usage

```r
plot.MPP(x, ...)
```

Arguments

- `x` a point process object of class MPP (marked point process)
- `...` further parameters which may be passed to the plot function (see R help about the plot function for further information)

Details

Creates an appropriate plot on graphical device. The input variable PP will be internally separated into x and y values to pass to plot()
plot.PP

Author(s)
documentation by Scott Ulman for R-language distribution

See Also
extremalPP

Examples
data(sp500);
sp500.nreturns <- -mk.returns(sp500);
window <- (seriesPositions(sp500.nreturns) >
 timeDate("12/31/1995",format ="%m/%d/%Y") &
 (seriesPositions(sp500.nreturns) <
 timeDate("01/01/2004",format = "%m/%d/%Y"));
sp500.nreturns <- sp500.nreturns[window];
tmp <- extremalPP(sp500.nreturns, ne=100);
plot.MPP(tmp);

plot.PP Plot Point Process

Description
creates a picture of an unmarked point process.

Usage
plot.PP(x, ...)

Arguments
x a point process object of class PP which must be unmarked
... further parameters which may be passed to the plot function (see R help about
the plot function for further information)

Details
Creates an appropriate plot on graphical device. The input variable x will be internally separated
into starttime and endtime values to pass to plot.stepfun()

Author(s)
documentation by Scott Ulman for R-language distribution

See Also
extremalPP, unmark
Examples

```r
data(sp500);
sp500.nreturns <- -mk.returns(sp500);
window <- (seriesPositions(sp500.nreturns) >
    timeDate("12/31/1995", format = "%m/%d/%Y") &
    (seriesPositions(sp500.nreturns) <
    timeDate("01/01/2004", format = "%m/%d/%Y");
sp500.nreturns <- sp500.nreturns[window];
#The following functions are contained in functionsHawkes.R.
#Plot the 100 largest exceedances. Create an MPP (marked point process) class
tmp <- extremalPP(sp500.nreturns, ne=100);
#Be sure to graph with plot.PP instead of plot.MPP:
tmp2 <- unmark(tmp);
plot.PP(tmp2);
```

plot.sePP

Plot Self-Exciting Point Process

Description

plots a fitted self-exciting point process model, either unmarked or marked

Usage

```r
plot.sePP(x, ...)
```

Arguments

- `x`: a fitted self-exciting point process model created by either fit.sePP or fit.seMPP.
 - ‘x’ is the generic value passed to all S3 plot functions.
- `...`: further parameters which may be passed to the plot function (see R help about the plot function for further information)

Details

Creates an appropriate plot on graphical device. The input variable will be internally separated into `x` and `y` values to pass to `plot()`

Author(s)

documentation by Scott Ulman for R-language distribution

See Also

fit.sePP, fit.seMPP
Examples

data(sp500);
sp500.nreturns <- -mk.returns(sp500);
window <- (seriesPositions(sp500.nreturns) > timeDate("12/31/1995", format = "%m/%d/%Y") & (seriesPositions(sp500.nreturns) < timeDate("01/01/2004", format = "%m/%d/%Y"))); sp500.nreturns <- sp500.nreturns[window];
tmp <- extremalPP(sp500.nreturns,ne=100);
mod2a <- fit.sePP(tmp,mark.influence=FALSE,std.errs=TRUE);
plot.sePP(mod2a);

plot.timeSeriesIts Plot single or multiple timeSeries objects on same graph

Description

Plots individual or multiple timeSeries objects with time on the x-axis and corresponding series values on the y-axis. Builds a reference grid by default. This function converts the timeSeries input object to an ‘its’(irregular time series object) and hence requires the ‘its’ library to be loaded. Use plot.timeSeriesIts() whenever the timeSeries x has multiple columns of data.

Usage

plot.timeSeriesIts(x, reference.grid = TRUE, lty = 1, ...)

Arguments

x a timeSeries object (may have multiple series)
reference.grid TRUE if you desire the graph to have a grid
lty line type for graphed series
... any other plot attributes which should be passed

Details

plot.timeSeries() is not working properly in fCalendar 240.10068 for multiple timeSeries on the same graph. Hence we’ve reinstituted an older version and named it plot.timeSeriesIts() to indicate we must have the ‘its’ library loaded. We may deprecate this function eventually.

Author(s)

documentation by Scott Ulman for R-language distribution
Examples

Plot two time series (ftse100 and smi indices) on same graph
data(ftse100);
data(smi);
TS1 <- cut(ftse100, "1990-11-08", "2004-03-25");
TS1Augment <- alignDailySeries(TS1, method="before");
TS2Augment <- alignDailySeries(smi, method="before");
INDEXES.RAW <- merge(TS1Augment, TS2Augment);
Cleanup:
rm(TS1, TS1Augment, TS2Augment);
plot.timeSeriesIts(INDEXES.RAW);

plotFittedGPDvsEmpiricalExcesses

Graphically Compare Empirical Distribution of Excesses and GPD Fit

Description

Build a graph which plots the GPD fit of excesses over a threshold u and the corresponding empirical distribution function for observed excesses.

Usage

plotFittedGPDvsEmpiricalExcesses(data, threshold = NA, nextremes = NA)

Arguments

data data vector or times series
threshold a threshold value (either this or "nextremes" must be given but not both)
nextremes the number of upper extremes to be used (either this or "threshold" must be given but not both)

Details

See graphs 7.4(c) and 7.5(c) in QRM, pp. 281-2.

Value

a plot showing empirical cdf of excesses vs points fitted to the estimated GPD for excesses

See Also

fit.GPD, plotTail, MEplot, xiplot
plotTail

Tail Plot of GPD Model

Description
plots the tail estimate corresponding to a GPD model of excesses over a high threshold

Usage
plotTail(object, extend=2, fineness=1000, ...)

Arguments
object result of fitting GPD to excesses over a high threshold
extend how far plot should extend expressed as multiple of largest data value
fineness number of points at which to evaluate the tail estimate
... additional arguments for plot function

Details
see pages 282-284 in QRM

Side Effects
a plot of the tail estimate is produced on a graphical device

See Also
fit.GPD, MEplot

Examples
data(danish);
mod <- fit.GPD(danish, 10);
modSpar.est;
plotTail(mod);
probitnorm

Probit-Normal Distribution

Description

density, cumulative probability and random number generation for distribution of random variable Q on unit interval such that the probit transform of Q has a normal distribution with parameters mu and sigma.

Usage

dprobitnorm(x, mu, sigma)
pprobitnorm(q, mu, sigma)
rprobitnorm(n, mu, sigma)

Arguments

- **x**: vector of values in unit interval at which to evaluate density.
- **q**: vector of values in unit interval at which to evaluate cumulative probabilities.
- **n**: sample size.
- **mu**: scalar parameter.
- **sigma**: scalar parameter.

Details

see pages 353-354 in QRM.

Value

vector of density values (dprobitnorm), cumulative probabilities (pprobitnorm) or random sample (rprobitnorm).

Author(s)

documentation by Scott Ulman for R-language distribution.

See Also

dbeta, dclaytonmix
Examples

Not run:
#MODEL RISK See especially Section 8.4.6 on p. 364 of QRM book
spdata.raw;
attach(spdata.raw);
pi.B <- momest(Bdefaults, Bobligors)[1];#one obligor defaulting pi = .04896
#second value returned is probability of joint default probability for two firms.
pi2.B <- momest(Bdefaults, Bobligors)[2]; #two obligors defaulting jointly pi2 = .0031265
#Build 1000 equally-spaced value on unit interval as multiples of .000999; discard
#all values except those below 0.25 because we want to look at the tail, i.e. Q > 0.25
#via the tail function [1 − P(Q <= 0.25)]
Model Risk Experiment
Calibrate a 1-Factor Creditmetrics (probitnormal) model to pi.B and pi2.B for all models:
The following values are shown in Table 8.6, column B, row labeled 'Probit-normal'.
#In other words, find the probitnorm mu and sigma values which give same probabilities as
#momest()
probitnorm.pars <- cal.probitnorm(pi.B,pi2.B);
probitnorm.pars;
q <- (1:1000)/1001;
q <- q[q<0.25];
We could also look at mixing densities. Remember that density values for continuous
#variables may exceed 1 since they give an approximation for the change in the cdf value
#as we change the x value. Hence if the cdf increases by 0.2 as we increase x from 0.1 to
#0.2, the density should be about 2.0 (dF(x)/dx).
d.probitnorm <- dprobitnorm(q,probitnorm.pars[1],probitnorm.pars[2]);
End(Not run)

psifunc

Psi or Digamma Function

description

calculates psi or digamma function

usage

psifunc(x=2, logvalue=FALSE)

arguments

x vector of values at which to calculate function

logvalue whether logarithm of function should be returned; default is FALSE

value

vector of values of psi or digamma function

see also

besselM3, gamma
qst

Student’s t Distribution (3 parameter)

Description

Quantiles for 3-parameter version of Student’s t distribution

Usage

qst(p, df, mu=0, sigma=1, scale=FALSE)

Arguments

p vector of probabilities
df vector of degrees of freedom
mu vector of location parameters
sigma vector of scale parameters
scale whether distribution should be scaled so that mu and sigma are mean and standard deviation; default is FALSE

Value

quantiles for Student’s t distribution

See Also

qt, ESst

Examples

Set up the quantile probabilities
p <- c(0.90, 0.95, 0.975, 0.99, 0.995, 0.999, 0.9999, 0.99999, 0.999999);
sigma <- 0.2*10000/sqrt(250);
Now look at VaR for student t with 4 degrees of freedom:
VaR.t4 <- qst(p, 4, sigma=sigma, scale=TRUE);
rAC

Generate Archimedean Copula

Description

generates data from a multivariate Archimedean copula with arbitrary dimension using the mixture construction of Marshall and Olkin

Usage

rAC(name, n, d, theta)

Arguments

name
number of the Archimedean copula from following list: clayton, gumbel, frank, BB9

n
number of realizations

d
dimension of copula

theta
parameter(s) of copula

Details

this function may easily be augmented with further Archimedean copulas

Value

a matrix of dimension n times d where rows are realizations

See Also

copula.clayton, copula.frank, copula.gumbel, copula.gauss, copula.t

Examples

simulate values from Archimedean copula of type gumbel
rAC("gumbel", n=3000, d=7, theta =3);
Description

generates random sample from mixing distribution required for sampling from Joe’s BB9 copula using Laplace transform method

Usage

rBB9Mix(n, theta)

Arguments

n size of sample
theta values of two parameters of BB9 copula; first must be positive; second must be greater than one.

Details

see page 224 of QRM. Algorithm essentially generates V corresponding to Joe’s BB9 copula. For this copula algorithm uses fairly naive rejection and is SLOW!

Value

random sample of size n

References

See Also

rAC
rFrankMix

Mixture Distribution Yielding Frank Copula

Description

generates random sample from discrete mixing distribution required for sampling from Frank’s copula using Laplace transform method

Usage

rFrankMix(n, theta)

Arguments

n size of sample
theta value of parameter of Frank copula

Details

see page 224 of QRM. Algorithm generates V corresponding to Frank’s copula.

Value

random sample of size n

See Also

rAC

Examples

Not run:
#Pass the parameter values n=20 and theta=0.5
result <- rFrankMix(20,0.5);
End(Not run)

rGIG

Generate Random Vector from Generalized Inverse Gaussian Distribution

Description

random generation for the generalized inverse Gaussian distribution

Usage

rGIG(n, lambda, chi, psi, envplot=FALSE, messages=FALSE)
Arguments

n sample size
lambda scalar parameter
chi scalar parameter
psi scalar parameter
envplot whether a plot of the rejection envelope should be made; default is FALSE
messages whether a message about rejection rate should be returned; default is FALSE

Details

uses a rejection algorithm suggested by Atkinson (1982)

Value

random sample of size n

References

See Also

rghyp, rmghyp

Examples

```r
## Not run:
#Create a mean-variance normal mixture of random
#variables called the generalized hyperbolic
#It is not necessarily elliptical but its univariate
#version will be. See p. 78 in QRM.
# This is the GH model.
rghyp <- function(n, lambda, chi, psi, mu=0, gamma=0)
{
  #generate a series of random Generalized Inverse Gaussian
  #variables: see p. 77 of QRM text
  W <- rGIG(n, lambda, chi, psi);
  # Generate a similar random sequence of standard normals:
  Z <- rnorm(n);
  #Mix the two distributions using equation 3.25 (p. 77) but
  #with gamma possibly 0 or a scalar
  sqrt(W) * Z + mu + gamma * W;
}
## End(Not run)
```
rbinomial.mixture Sample Mixed Binomial Distribution

Description
random generation from mixed binomial distribution

Usage
rbinomial.mixture(n=1000, m=100, model="probitnorm", ...)

Arguments
n sample size
m vector of numbers of coin flips
model name of mixing distribution: "probitnorm", "logitnorm", "beta",...
... further parameters of mixing distribution

Details
see pages 354-355 and pages 375-377 of QRM

Value
vector of numbers of successes

See Also
rbeta, rprobitnorm, rlogitnorm

Examples
Not run:
pi <- 0.04896; # one obligor defaulting pi = .04896
pi2 <- 0.00321; # two obligors defaulting jointly pi2 = .0031265
beta.pars <- cal.beta(pi,pi2);
probitnorm.pars <- cal.probitnorm(pi,pi2);
n <- 1000;
m <- rep(500,n);
M.beta <- rbinomial.mixture(n,m,"beta",shape1=beta.pars[1],
 shape2=beta.pars[2]);
M.probitnorm <- rbinomial.mixture(n,m,"probitnorm",
 mu=probitnorm.pars[1],sigma=probitnorm.pars[2]);
End(Not run)
rcopula.AGumbel

Generate Asymmetric Gumbel Copula

Description

generates sample from asymmetric Gumbel copula

Usage

rcopula.AGumbel(n, theta, alpha=rep(1, d), d=2)

Arguments

n
sample size

theta
scalar parameter of an exchangeable Gumbel copula

alpha
vector of length d containing parameters of asymmetry

d
dimension of copula

Details

see pages 224-226 of QRM for bivariate example of this copula; the idea obviously carries over to higher dimensions

Value

a matrix of dimension n times d where rows are realizations

See Also

rAC, rcopula.Gumbel2Gp, rcopula.GumbelNested

Examples

data.AGumbel <- rcopula.AGumbel(10000, theta=4,
 alpha=c(0.95,0.7));
plot(data.AGumbel);
data.AGumbel <- rcopula.AGumbel(5000, theta=2,
 c(0.1,0.7,0.8,0.9));
pairs(data.AGumbel);
hist(data.AGumbel[,4]);
rcopula.Gumbel2Gp

Gumbel Copula with Two-Group Structure

Description

generates sample from a Gumbel copula with two-group structure constructed using three Gumbel generators

Usage

```r
rcopula.Gumbel2Gp(n=1000, gpsizes=c(2, 2), theta=c(2, 3, 5))
```

Arguments

- **n** sample size
- **gpsizes** vector of length two containing sizes of the groups
- **theta** parameter vector of length 3 giving parameters of the three Gumbel generators

Details

see page 227 of QRM for an example of construction

Value

matrix of dimension n by sum(gpsizes) where rows are realizations

See Also

- rAC, rcopula.AGumbel, rcopula.GumbelNested

Examples

```r
data <- rcopula.Gumbel2Gp(n=3000, gpsizes=c(3, 4),
                         theta=c(2, 3, 5));
pairs(data);
```
Clayton Copula Simulation

Description
generates a random sample from the Clayton copula

Usage
rcopula.clayton(n, theta, d)

Arguments

 n sample size
 theta parameter value
 d dimension of copula

Details
see pages 222-224 in QRM

Value
matrix with n rows and d columns where rows are realizations

See Also
rAC, rcopula.gumbel, rcopula.gauss, rcopula.t, rcopula.frank

Examples

data <- rcopula.clayton(1000, 2, 4);
pairs(data);

Frank Copula Simulation

Description
generates a random sample from the Frank copula

Usage
rcopula.frank(n, theta, d)
rcopula.gauss

Arguments

- `n`: sample size
- `theta`: parameter value
- `d`: dimension of copula

Details

see pages 222-224 in QRM

Value

matrix with n rows and d columns where rows are realizations

See Also

rAC, rcopula.gumbel, rcopula.clayton, rcopula.gauss, rcopula.t

Examples

```r
## Not run:
data <- rcopula.frank(1000,1.5,4);
pairs(data);
## End(Not run)
```

rcopula.gauss

Gauss Copula Simulation

Description

generates a random sample from the Gaussian copula

Usage

`rcopula.gauss(n, Sigma=equicorr(d, rho), d=2, rho=0.7)`

Arguments

- `n`: number of observations
- `Sigma`: correlation matrix
- `d`: dimension of copula
- `rho`: correlation parameter for specifying an equicorrelation structure

Details

This function is set up to allow quick simulation of Gauss copulas with an equicorrelation structure. Simply enter a value for the dimension `d` and the correlation parameter `rho`. For more general correlation matrices specify `Sigma`.

r

rcopula.gauss

Gauss Copula Simulation

Description

generates a random sample from the Gaussian copula

Usage

`rcopula.gauss(n, Sigma=equicorr(d, rho), d=2, rho=0.7)`

Arguments

- `n`: number of observations
- `Sigma`: correlation matrix
- `d`: dimension of copula
- `rho`: correlation parameter for specifying an equicorrelation structure

Details

This function is set up to allow quick simulation of Gauss copulas with an equicorrelation structure. Simply enter a value for the dimension `d` and the correlation parameter `rho`. For more general correlation matrices specify `Sigma`.

Examples

```r
## Not run:
data <- rcopula.frank(1000,1.5,4);
pairs(data);
## End(Not run)
```

```r
rcopula.gauss  

Gauss Copula Simulation

Description

generates a random sample from the Gaussian copula

Usage

`rcopula.gauss(n, Sigma=equicorr(d, rho), d=2, rho=0.7)`

Arguments

- `n`: number of observations
- `Sigma`: correlation matrix
- `d`: dimension of copula
- `rho`: correlation parameter for specifying an equicorrelation structure

Details

This function is set up to allow quick simulation of Gauss copulas with an equicorrelation structure. Simply enter a value for the dimension `d` and the correlation parameter `rho`. For more general correlation matrices specify `Sigma`. 

Examples

```r
Not run:
data <- rcopula.frank(1000,1.5,4);
pairs(data);
End(Not run)
```
Value

a matrix with n rows and d columns

See Also

rAC, rcopula.gumbel, rcopula.clayton, rcopula.frank, rcopula.t

Examples

data <- rcopula.gauss(2000,d=6,rho=0.7);
pairs(data);

data <- rcopula.gumbel(1000,3,4);
pairs(data);
rcopula.GumbelNested

Gumbel Copula with Nested Structure

Description

generates sample from a d dimensional Gumbel copula with nested structure constructed using (d-1) Gumbel generators

Usage

rcopula.GumbelNested(n, theta)

Arguments

n sample size
theta vector of admissable Gumbel copula parameters of length (d-1) ordered by increasing size

Details

see page 226 of QRM for trivial trivariate example

Value

matrix of dimension n by d where rows are realizations

See Also

rAC, rcopula.AGumbel, rcopula.Gumbel2Gp

Examples

data <- rcopula.GumbelNested(n=3000,theta=1:6);
pairs(data);
rcopula.t  
`t Copula Simulation`

**Description**

generates a random sample from the t copula

**Usage**

```r
rcopula.t(n, df, Sigma=equicorr(d, rho), d=2, rho=0.7)
```

**Arguments**

- **n**: number of observations
- **df**: degrees of freedom
- **Sigma**: correlation matrix
- **d**: dimension of copula
- **rho**: correlation parameter for specifying an equicorrelation structure

**Details**

This function is set up to allow quick simulation of t copulas with an equicorrelation structure. Simply enter a value for the dimension d and the correlation parameter rho. For more general correlation matrices specify Sigma.

**Value**

a matrix with n rows and d columns

**See Also**

- rAC, rcopula.gumbel, rcopula.clayton, rcopula.gauss, rcopula.frank

**Examples**

```r
data <- rcopula.t(2000, df=4, d=6, rho=0.7);
pairs(data);
```
Random Number Generation from Logit-Normal Distribution

Description

Random number generation for distribution of random variable Q on unit interval such that the probit transform of Q has a normal distribution with parameters \( \mu \) and \( \sigma \).

Usage

\[ \text{rlogitnorm}(n, \mu, \sigma) \]

Arguments

- \( n \) sample size
- \( \mu \) scalar parameter
- \( \sigma \) scalar parameter

Details

see pages 353-354 in QRM

Value

random sample of size \( n \)

Author(s)

documentation by Scott Ulman for R-language distribution

See Also

\( \text{rbeta, rclaytonmix, rprobitnorm} \)

Examples

```
set number, mean, and variance:
num <- 1000;
mu <- 2.0;
sigma <- 1.25;
Simulate values from logistic norm mix
simVals <- rlogitnorm(num, mu, sigma);
```
rmnorm  

Multivariate Normal Random Sample

Description

generates random sample from multivariate normal

Usage

rmnorm(n, Sigma=equicorr(d, rho), mu=rep(0, d), d=2, rho=0.7)

Arguments

n  
number of realizations

Sigma  
a covariance matrix

mu  
a mean vector

d  
dimension of distribution

rho  
correlation value to build equicorrelation matrix

Details

function is set up to quickly simulate equicorrelation structures by specifying d and rho

Value

an n by d matrix

Author(s)

documentation by Scott Ulman for R-language distribution

See Also

rmt, equicorr

Examples

ndata <- rmnorm(1000, rho=0.7, d=3);
## Not run:
Sigma <- diag(c(3,4,5)) %*% equicorr(3,0.6) %*% diag(c(3,4,5));
mu <- c(1,2,3);
ndata <- rmnorm(1000, Sigma, mu);
fit.norm(ndata);
## End(Not run)
Multivariate t

description

generates random sample from multivariate t

usage

```r
rmt(n, df=4, Sigma=equicorr(d, rho), mu=rep(0, d), d=2, rho=0.7)
```

arguments

- `n`: number of realizations
- `df`: degrees of freedom
- `Sigma`: a dispersion matrix
- `mu`: a mean vector
- `d`: dimension of distribution
- `rho`: correlation value to build equicorrelation matrix

Details

function is set up to quickly simulate equicorrelation structures by specifying d and rho

value

an n by d matrix

See Also

`rmnorm`, `equicorr`, `rmghyp`

Examples

```r
Not run:
data <- rmnorm(1000, df=4, rho=0.7, d=3);
Sigma <- diag(c(3,4,5)) %*% equicorr(3,0.6)
%*% diag(c(3,4,5));
mu <- c(1,2,3);
data <- rmt(1000,4,Sigma,mu);
modl <- fit.mst(tdata);
End(Not run)
```
### rstable

#### Stable Distribution

**Description**

random sample from stable distribution

**Usage**

```r
rstable(n, alpha, beta=1)
```

**Arguments**

- `n` sample size
- `alpha` scalar parameter strictly larger than 0 and smaller than 2 (but avoid alpha=1)
- `beta` scalar parameter between -1 and 1

**Details**

see pages 224 and 498 of QRM; default value beta=1 combined with an alpha value less than 1 gives positive stable distribution which we require for Gumbel copula generation; the case alpha=1 has not been implemented

**Value**

sample of size n

**References**

Forthcoming John Nolan Book; see Definition 1.8 and Theorem 1.19

**See Also**

`rcopula.gumbel`

**Examples**

```r
Not run:
#Use rstable() method in copula simulation function
rcopula.Gumbel2Gp <- function(n = 1000,
 gpsizes = c(2,2), theta = c(2,3,5)) {
 Y <- rstable(n,1/theta[1])*(cos(pi/(2*theta[1])))^theta[1];
 innerU1 <- rcopula.gumbel(n,theta[2]/theta[1],gpsizes[1]);
 innerU2 <- rcopula.gumbel(n,theta[3]/theta[1],gpsizes[2]);
 U <- cbind(innerU1,innerU2);
 Y <- matrix(Y, nrow = n, ncol = sum(gpsizes));
 out <- exp(- (- log(U)/Y)^(1/theta[1]));
}
Mixing Distribution on Unit Interval Yielding t Copula Model

Description
random generation for mixing distribution on unit interval yielding t copula model

Usage
`rtcopulamix(n, pi, rho.asset, nu)`

Arguments
- `n` sample size
- `pi` default probability
- `rho.asset` asset correlation parameter
- `nu` degree of freedom parameter

Details
see page 361 in QRM; we consider exchangeable case of this model

Value
random values on unit interval

See Also
`rbeta`, `rclaytonmix`, `rlogitnorm`, `rprobitnorm`

Examples
```r
t # set number, mean, and variance:
num <- 1000;
pi <- 0.9;
rho <- 0.5;
df <- 4;
simVals <- rtcopulamix(num,pi,rho,df);```
seMPP.negloglik  
Marked Self-Exciting Point Process Log-Likelihood

Description

evaluates negative log-likelihood of a marked self-exciting point process model; this will be objective function massed to nlminb() or optim().

Usage

seMPP.negloglik(theta, PP, case, markdens)

Arguments

theta vector of parameters of self-exciting model
PP point-process data
case a numerical variable coding whether Hawkes or ETAS forms are used and whether marks may have an influence on future points
markdens name of density for marks; currently must be "GPD"

Value

value of log-likelihood

Author(s)

documentation by Scott Ulman for R-language distribution

See Also

fit.seMPP, fit.sePP

Examples

## Not run:
#Example of using seMPP.negloglik as objective function passed
to optimizer function
fit.seMPP <- function(PP, markdens="GPD", model="Hawkes",
                      mark.influence=TRUE, predictable=FALSE, std.errs=FALSE)
{
  if (class(PP) != "MPP") stop("Not marked point process data");
  marks <- PP$marks;
  groundmod <- fit.sePP(PP, model, mark.influence=TRUE, std.errs=FALSE);
  #lines removed here...
  if (predictable)
  {
    theta <- c(par.est, 0);
    fit <- nlminb(start=theta, objective=seMPP.negloglik,


**sePP.negloglik**  

*Self-Exciting Point Process Log-Likelihood*

**Description**

evaluates negative log-likelihood of a self-exciting point process model (unmarked)

**Usage**

```
sePP.negloglik(theta, PP, case)
```

**Arguments**

- `theta`: parameters of self-exciting model
- `PP`: point-process data
- `case`: a numerical variable coding whether Hawkes or ETAS forms are used and whether marks may have an influence on future points

**Value**

value of log-likelihood

**Author(s)**

documentation by Scott Ulman for R-language distribution

**See Also**

`fit.sePP, fit.seMPP`

**Examples**

```r
Not run:
#Example of using sePP.negloglik as objective function passed
#to optimizer function
fit.sePP <- function(PP, markdens="GPD", model="Hawkes",
 mark.influence=T, predictable=F, std.errs=F)
{
 #lines removed here...
 fit <- nlminb(start=theta, objective=sePP.negloglik, PP=PP, case=case);
 par.est <- fit$par;
 par.est <- abs(par.est)
 ll.max <- -sePP.negloglik(par.est, PP, case)
```
showRM

Show Risk Measure Estimates on Tailplot

Description

shows estimates of risk measures (like VaR and ES) on a tailplot

Usage

showRM(object, alpha, RM="VaR", extend=2, ci.p=0.95, like.num=50.)

Arguments

object results of fit.GPD
alpha probability level
RM risk measure, VaR or ES
extend how far to extend picture; x-axis extends to this value times the largest observation
ci.p confidence level for confidence interval
like.num number of evaluations of profile likelihood

Details

see pages 282-284 in QRM

Value

point estimate and confidence interval for risk measure

Side Effects

plotTail is called

See Also

plotTail, fit.GPD, RiskMeasures
Examples

```r
Not run:
data(danish);
Fit the GPD using MLE a
mod <- fit.GPD(danish,10);
showRM(mod,0.99,RM="VaR");
showRM(mod,0.99,RM="ES");
showRM(mod,0.995,RM="VaR");
showRM(mod,0.995,RM="ES");
End(Not run)
```

### signalSeries

**Description**

Structured after the S-Plus `signalSeries` object. It contains a data slot of any type and a NUMERIC positions slot rather than the date slot of a `timeSeries`. In other words, each data value has a numeric value associated with its position in the overall list.

### Usage

```r
signalSeries(data, positions., units, units.position, from = 1, by = 1)
```

### Arguments

- `data`: a component which is typically a dataframe
- `positions.`: a numeric component describing the positions of the data values
- `units`: character vector describing the type of units used in the data structure
- `units.position`: character vector describing the type of units used for the positions
- `from`: starting value of positions
- `by`: amount to skip between positions

### Details

If no arguments are supplied, the default (empty) `signalSeries` object is returned. Otherwise, a `signalSeries` object is created with the given positions and data, and units if they are supplied. As an alternative to supplying the positions directly, they can be supplied by giving `from` and `by`, in which case the positions are generated as a numeric sequence with the right length to match the data.

### Value

A `signalSeries` object with the given data and positions.
See Also

aggregateSignalSeries

Examples

signalSeries(); #default object with no data or positions
#Create matrix of simulated values from multivariate-t distribution
m <- 90; n <- 3000;
dataSim <- rmt(m*n,df=3,rho=0.5,d=2);
dataSimSS <- signalSeries(dataSim);

smi

Swiss Market Index

Description

This timeSeries data set provides the daily closing values of the SMI (Swiss Market Index) from November 1990 to March 2004

sp500

Standard and Poors 500 Index

Description

This timeSeries data set provides the daily closing values of the SandP 500 Index from 1990 to March 2004

spdata

Standard and Poors Default Data

Description

The spdata data frame has 100 rows and 4 columns. It contains default data for A, BBB, BB, B and C-rated companies for the years 1981 to 2000

Usage

data(spdata)

Format

a matrix containing 100 rows and 4 columns.
The columns are:
### Description

The `spdata.raw` data frame has 20 rows and 11 columns. It contains default data for A, BBB, BB, B and C-rated companies for the years 1981 to 2000.

### Usage

```r
data(spdata.raw)
```
Format

This data frame contains the following 11 columns:

- **year**: year of default
- **Aobligors**: number of A-rated companies
- **Adefaults**: number of A-rated companies defaulting in year
- **BBBobligors**: number of BBB-rated companies
- **BBBdefaults**: number of BBB-rated companies that default in year
- **BBobligors**: number of BB-rated companies
- **BBdefaults**: number of BB-rated companies that default in year
- **Bobligors**: number of B-rated companies
- **Bdefaults**: number of B-rated companies that default in year
- **CCCobligors**: number of CCC-rated companies
- **CCCdefaults**: number of CCC-rated companies that default in year

There are 20 rows with values for the years from 1981 to 2000

Source

Standard & Poors Credit Monitor

See Also

- `spdata`
- `momest`

Examples

```r
data(spdata.raw);
attach(spdata.raw);
BdefaultRate <- Bdefaults/Bobligors;
BBdefaultRate <- BBdefaults/BBobligors;
BBBdefaultRate <- BBBdefaults/BBBobligors;
AdefaultRate <- Adefaults/Aobligors;
CCCdefaultRate <- CCCdefaults/CCCobligors;
Not run:
plot(year,CCCdefaultRate,xlab="Year",ylab="Rate",type="l");
lines(year,BdefaultRate,col=2);
lines(year,BBdefaultRate,col=3);
lines(year,BBBdefaultRate,col=4);
lines(year,AdefaultRate,col=5);
momest(Bdefaults,Bobligors);
pi.B <- momest(Bdefaults, Bobligors)[1];
pi2.B <- momest(Bdefaults, Bobligors)[2];
End(Not run)
```
stationary.sePP

Stationarity of Self-Exciting Model

Description

checks a sufficient condition for stationarity of a self-exciting model and gives information about cluster size

Usage

stationary.sePP(sePP)

Arguments

sePP a fitted self-exciting process created with fit.sePP or marked self-exciting process created with fit.seMPP

Value

a vector consisting of binary flag for stationarity condition, estimated number of direct descendents of any event and estimated size of cluster generated by any new event

References


See Also

fit.sePP, fit.seMPP

Examples

data(sp500);
sp500.nreturns <- -mk.returns(sp500);
window <- (seriesPositions(sp500.nreturns) >
            timeDate("12/31/1995", format = "%m/%d/%Y");
sp500.nreturns <- sp500.nreturns[window];
tmp <- extremalPP(sp500.nreturns, ne=100);
mod3a <- fit.seMPP(tmp, mark.influence=FALSE, std.errs=TRUE);
#Note that stationary.sePP applies to both sePP and seMPP processes.
stationary.sePP(mod3a);
symmetrize  

Ensure Symmetric Matrix

Description
ensures a matrix that should be symmetric is really symmetric

Usage
symmetrize(matrix)

Arguments
matrix a matrix that should be symmetric

Details
deals with situations where rounding errors cause symmetric matrices to appear asymmetric

Value
a matrix that is symmetric

Examples

## Not run:
#lines of code taken from fit.mst() in functionsNormix.R  
# ...  
Sigma <- var(data);  
Sigma <- symmetrize(Sigma);  
beta <- as.vector(solve(Sigma)  
mean <- as.numeric(mu+EW*gamma);  
covariance <- EW*Sigma + varW*outer(gamma,gamma);  
## End(Not run)

timeSeriesClass  

timeSeries Objects in R

Description
The R-language has developed multiple 'time-series' type objects through multiple contributors. The time-series objects in R-language closest to those in S-Plus appear to be those belonging to the timeSeries class described in fCalendar library from R-metrics. Dates and times are implemented as 'timeDate' objects within 'timeSeries'. The class contains functions for the generation and representation of 'timeSeries' objects and mathematical operations on the objects. Use timeSeries() as the constructor for the class.
unmark

Usage:
timeSeries(data, charvec, units=NULL, format="ISO", zone="GMT",
FinCenter=myFinCenter,
recordIDs=data.frame(),title=NULL, documentaion = NULL, ...)

Arguments

- **data**
  a vector or matrix or data frame containing numeric values
- **charvec**
  a character vector of dates and times
- **units**
  (optional) character string allowing overwrite of current column names
- **format**
  (optional) timeDate string format, defaulting to 'ISO'
- **zone**
  (optional) time zone where the data were recorded
- **FinCenter**
  location of financial center as Continent/City

Details

IMPORTANT INFORMATION: You can extract the DATE segment from a timeSeries object using
1) the seriesPosition function: (e.g. use seriesPositions(sp500))
2) the positions attribute (e.g. dates <- sp500@positions)

You can extract the NUMERIC segment from a timeSeries object using
1) the seriesData function (e.g. use seriesData(sp500))
2) the Data attribute (e.g. returns <- sp500@Data)

Value

a timeSeries object

Author(s)

documentation by Scott Ulman for R-language distribution

See Also

TimeSeriesClassRMetrics

---

unmark  

Unmark Point Process

Description

strips marks from a marked point process

Usage

unmark(PP)
Arguments

PP a point process object of class PP

Details

If necessary, more details than the description above

Value

Describe the value returned If it is a LIST, use

comp1 Description of 'comp1'
comp2 Description of 'comp2'
...

See Also

fit.sePP, fit.seMPP, extremalPP

Examples

data(sp500);
sp500.nreturns <- -mk.returns(sp500);
window <- (seriesPositions(sp500.nreturns) >
        timeDate("12/31/1995", format = "%m/%d/%Y");
sp500.nreturns <- sp500.nreturns[window];
tmp <- extremalPP(sp500.nreturns,ne=100);
tmp2 <- unmark(tmp);

---

volfunction

Self-Excitement Function

Description

calculates a self-excitement function for use in the negloglik() methods used in fit.sePP() and fit.seMPP()

Usage

volfunction(anytimes, times, marks, theta, model)

Arguments

anytimes vector of times at which to calculate self-excitement function

times times of point events

marks marks associated with point events

theta parameters of self-excitement function

model model number
Details

see page 306 of QRM

Value

a vector of same length as "anytimes"

See Also

*fit.sePP*, *fit.seMPP*

Examples

```r
Not run:
seMPP.negloglik <- function(theta, PP, case, markdens)
{
theta <- abs(theta);
times <- PP$times;
marks <- PP$marks;
endtime <- PP$endtime;
starttime <- PP$starttime;
mu <- theta[1];
phi <- theta[2];
voltheta <- theta[-c(1,2,(length(theta)-2),
 (length(theta)-1),length(theta))];
evol <- volfunction(times,times,marks,voltheta,case);
lambda.contrib <- mu+phi*evol
... remaining lines ommitted here
}
End(Not run)
```

---

**Xdax**

*Xetra DAX Index*

**Description**

This timeSeries data set provides the daily closing values of the Xetra DAX index from 1994 to March 2004.
xiplot

GPD Shape Parameter Plot

Description

creates a plot showing how the estimate of shape varies with threshold or number of extremes.

Usage

```r
xiplot(data, models=30., start=15., end=500., reverse=TRUE,
 ci=0.95, auto.scale=TRUE, labels=TRUE, table=FALSE, ...)
```

Arguments

- `data`: vector or time series of data
- `models`: number of consecutive gpd models to be fitted; i.e. the number of different thresholds at which to re-estimate xi; this many xi estimates will be plotted
- `start`: lowest number of exceedances to be considered
- `end`: maximum number of exceedances to be considered
- `reverse`: should plot be by increasing threshold (TRUE) or number of extremes (FALSE)
- `ci`: probability for asymptotic confidence band; for no confidence band set to FALSE
- `auto.scale`: whether or not plot should be automatically scaled; if not, xlim and ylim graphical parameters may be entered
- `labels`: whether or not axes should be labelled; default is TRUE
- `table`: should a table of results be printed; default is FALSE
- `...`: further parameters of xiplot function

Details

For every model "fit.GPD" is called. Evaluation may be slow.

See Also

`fit.GPD`, `MEplot`

Examples

```r
Shape plot of heavy-tailed Danish fire insurance data:
data(danish);
xiplot(danish);
```
Index

*Topic array
  CovToCor, 34
  eigenmeth, 43
equicorr, 46
  Pconstruct, 15
  Pdeconstruct, 15
  symmetrize, 119

*Topic classes
  signalSeries, 114
  TimeSeriesClassRMetrics, 18

*Topic datasets
  cac40, 7
  Danish, 34
  DJComponents, 7
dji, 8
  ftse100, 70
  FXGBP.RAW, 8
  hsi, 75
  nasdaq, 85
  nikkei, 85
  smi, 115
  sp500, 115
  spdata, 115
  spdata.raw, 116
  xdat, 122

*Topic distribution
  beta (stats), 28
  claytonmix, 33
dcopula.clayton, 35
dcopula.gauss, 36
dcopula.gumbel, 37
dcopula.t, 38
dmnorm, 39
dmt, 40
dsmghyp, 40
  EGIg, 42
  ELogGIG, 44
  ESnorm, 46
  ESSt, 47
  GEV, 8
  ghyp, 70
  ghypB, 71
  GPD, 9
  Gumbel, 10
  mghyp, 77
  probitnorm, 91
  qst, 93
  rAC, 94
  rBB9Mix, 95
  rbinomial.mixture, 98
  rcopula.AGumbel, 99
  rcopula.clayton, 101
  rcopula.frank, 101
  rcopula.gauss, 102
  rcopula.gumbel, 103
  rcopula.Gumbel2Gp, 100
  rcopula.GumbelNested, 104
  rcopula.t, 105
  rFrankMix, 96
  rGIG, 96
  rlogitnorm, 106
  rmnorm, 107
  rmt, 108
  rstable, 109
  rtcopulamix, 110

*Topic hplot
  BiDensPlot, 6
  hillPlot, 74
  MEplot, 13
  plot.MPP, 85
  plot.PP, 86
  plot.sePP, 87
  plot.timeSeriesIts, 88
  plotFittedGPDvsEmpiricalExcesses, 89
  plotTail, 90
  QQplot, 16
  showRM, 113
INDEX

danish (Danish), 34
dbeta, 33, 91
dbeta (beta (stats)), 28
dclaytonmix, 91
dclaytonmix (claytonmix), 33
dcopula.clayton, 35, 36–38
dcopula.gauss, 35, 36, 37, 38
dcopula.gumbel, 35, 36, 37, 38
dcopula.t, 35–37, 38
dgamma, 29
dGEV (GEV), 8
dghyp, 17, 28, 72
dghyp (ghyp), 70
dghypB, 71
dghypB (ghypB), 71
dGPD (GPD), 9
dGumbel (Gumbel), 10
DJ (DJComponents), 7
DJComponents, 7
dji, 8
dmghyp, 28, 39–41, 71
dmghyp (mghyp), 77
dmnorm, 7, 36, 39, 40, 64, 79
dmt, 7, 38, 39, 40, 79
dprobitnorm, 32, 33
dprobitnorm (probitnorm), 91
dsmghyp, 40, 79
edf, 42
EGIG, 42, 44
eigenmeth, 43
ElogGIG, 43, 44
EMupdate, 12, 45, 62
equicorr, 34, 46, 107, 108
ESnorm, 46, 48
ESst, 47, 47, 93
extremalPP, 48, 56, 86, 121
findthreshold, 49
fit.Archcoppula2d, 35, 37, 50, 61, 68, 69
fit.binomial, 56, 57, 59, 60
fit.binomialBeta, 56, 57, 59, 60, 84
fit.binomialLogitnorm, 56, 57, 58, 60, 84
fit.binomialProbitnorm, 56, 57, 59, 84
fit.gausscopula, 15, 16, 50, 60, 68, 69
fit.GEV, 9, 10, 51, 52, 54
fit.GPD, 9, 10, 14, 17, 49, 51, 52, 54, 56, 89, 90, 113, 123
fit.GPDb, 52, 53
fit.mNH, 12, 13, 45, 54, 61, 63, 67
fit.mst, 54, 62, 63, 67
fit.NH, 54, 62, 63, 67
fit.norm, 64
fit.POT, 55
fit.seMPP, 49, 64, 66, 87, 111, 112, 118, 121, 122
fit.sePP, 49, 65, 66, 87, 111, 112, 118, 121, 122
fit.st, 54, 63, 67
fit.tcopula, 15, 16, 50, 61, 68, 69
fit.tcopula.rank, 11, 44, 69
ftse100, 70
FXGBP.RAW, 8
gamma, 92
GEV, 8
ghyp, 70
ghypB, 71
GPD, 9
Gumbel, 10
hessb, 73
hillPlot, 74
hsi, 75
jointnormalTest, 14, 75
Kendall, 11, 18
kurtosisSPlus, 76
lbeta, 77
MardiaTest, 14, 76
MCECM.Qfunc, 12, 62
MCECMupdate, 12, 12, 62
MEplot, 13, 89, 90, 123
mghyp, 77
mk.its.exceedances.ts, 79, 82
mk.its.exceedances.vector, 80, 81
mk.olds, 82
mk.recurns, 80, 82, 83
momest, 84, 116, 117
nasdaq, 85
nikkei, 85
pbeta (beta (stats)), 28
pclaytonmix (claytonmix), 33
Pconstruct, 15, 16
Pdeconstruct, 15, 15
pGEV, 10, 51, 52
pGEV (GEV), 8
pGPD, 9, 51, 52
pGPD (GPD), 9
pGumbel (Gumbel), 10
plot.MPP, 85
plot.PP, 86
plot.sePP, 65, 66, 87
plot.timeSeriesIts, 88
plotFittedGPDvsEmpiricalExcesses, 89
plotTail, 75, 89, 90, 113
pprobite (probitnorm), 91
probitnorm, 91
profileLoadLibrary, 2, 4, 5, 5
psifunc, 92
qbeta (beta (stats)), 28
qGEV (GEV), 8
qGPD (GPD), 9
qGumbel (Gumbel), 10
qqnorm, 17
QQplot, 16
QRMBook-workspace, 2, 5, 6
QRMBook-workspace, 3
QRMlib (QRMlib-package), 1
QRMlib-package, 1
qst, 93
qt, 93
rAC, 94, 95, 96, 99–105
rBB9Mix, 95
rbeta, 98, 106, 110
rbeta (beta (stats)), 28
rbinomial.mixture, 30–32, 98
rclaytonmix, 31, 106, 110
rclaytonmix (claytonmix), 33
rcopula.AGumbel, 99, 100, 104
rcopula.clayton, 94, 101, 102, 103, 105
rcopula.frank, 94, 101, 101, 103, 105
rcopula.gauss, 94, 101, 102, 102, 103, 105
rcopula.gumbel, 94, 101, 102, 103, 105, 109
rcopula.Gumbel2Gp, 99, 100, 104
rcopula.GumbelNested, 99, 100, 104
rcopula.t, 94, 101–103, 105
rFrankMix, 96
rGEV (GEV), 8
rghyp, 97
rghyp (ghyp), 70
rghypB (ghypB), 71
rGIG, 28, 43, 44, 96
rGPD (GPD), 9
RiskMeasures, 17, 54, 113
rlogitnorm, 98, 106, 110
rmghyp, 97, 108
rmghyp (mg hyp), 77
rmnorm, 46, 107, 108
rmt, 46, 107, 108
rprobitnorm, 98, 106, 110
rprobitnorm (probitnorm), 91
rstable, 109
rtcopulamix, 110
seMPP.negloglik, 111
sePP.negloglik, 112
showRM, 17, 113
signalSeries, 25, 114
smi, 115
sp500, 115
spdata, 115, 117
spdata.raw, 116, 116
Spearman, 11, 18
Special, 29, 77
stationary.sePP, 65, 66, 118
storeDataInWorkspace, 2, 4, 4, 6
symmetrize, 119
timeSeriesClass, 21, 80, 82, 83, 119
TimeSeriesClassRMetrics, 18, 83, 120
unmark, 49, 86, 120
volfuction, 121
xdax, 122
xiplot, 75, 89, 123